Asymptotic classification of solutions of singular 4th-order Emden–Fowler equations with a constant negative potential
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose an asymptotic classification for solutions of the equation $ y^{\mathrm{IV}}(x)-p_0 |y|^{k} \operatorname{sgn} y=0$, $0$, and establish the existence of its periodic solutions.
@article{TSP_2016_31_31_a0,
     author = {I. V. Astashova},
     title = {Asymptotic classification of solutions of singular 4th-order {Emden{\textendash}Fowler} equations with a constant negative potential},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {3--21},
     year = {2016},
     volume = {31},
     number = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a0/}
}
TY  - JOUR
AU  - I. V. Astashova
TI  - Asymptotic classification of solutions of singular 4th-order Emden–Fowler equations with a constant negative potential
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 3
EP  - 21
VL  - 31
IS  - 31
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a0/
LA  - ru
ID  - TSP_2016_31_31_a0
ER  - 
%0 Journal Article
%A I. V. Astashova
%T Asymptotic classification of solutions of singular 4th-order Emden–Fowler equations with a constant negative potential
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 3-21
%V 31
%N 31
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a0/
%G ru
%F TSP_2016_31_31_a0
I. V. Astashova. Asymptotic classification of solutions of singular 4th-order Emden–Fowler equations with a constant negative potential. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 3-21. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a0/

[1] Astashova I. V., “Ob asimptoticheskom povedenii peshenii nelineinykh differentsialnykh uravnenii s singulyarnoi nelineinostyu”, Differents. uravneniya, 50:11 (2014), 847–848 | DOI

[2] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990

[3] Astashova I. V., “Kachestvennye svoistva reshenii kvazilineinykh obyknovennykh differentsialnykh uravnenii”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, ed. I. V. Astashova, YuNITI-DANA, M., 2012, 22–288

[4] Astashova I. V., “On asymptotic behavior of solutions to a forth-order nonlinear differential equation”, Proceedings of the 1st WSEAS International Conference on Pure Mathematics, PUMA '14 (Tenerife, Spain, January 10–12, 2014), WSEAS Press, 2014, 32–41

[5] Astashova I. V., “Asimptoticheskaya klassifikatsiya reshenii singulyarnykh nelineinykh uravnenii tipa Emdena–Faulera chetvertogo poryadka c postoyannym polozhitelnym potentsialom”, Differents. uravneniya, 51:6 (2015), 827–828 | MR

[6] Astashova I. V., “Asimptoticheskaya klassifikatsiya reshenii singulyarnykh nelineinykh uravnenii tipa Emdena–Faulera chetvertogo poryadka s postoyannym otritsatelnym potentsialom”, Differents. uravneniya, 51:11 (2015), 1546–1547

[7] Astashova I., “On asymptotic classification of solutions to nonlinear third- and fourth-order differential equations with power nonlinearity (Ob asimptoticheskoi klassifikatsii reshenii nelineinykh uravnenii tretego i chetvertogo poryadkov so stepennoi nelineinostyu)”, Vestn. MGTU im. N. E. Baumana. Ser.: Estestvennye nauki, 2015, no. 2, 3–25

[8] Hartman P., Ordinary Differential Equations, Wiley, New York, 1964 | MR | Zbl

[9] Kondratev V. A., Nikishkin V. A., “O polozhitelnykh resheniyakh uravneniya $y'' = p(x) y^{k}$”, Nekotorye voprosy kachestvennoi teorii differentsialnykh uravnenii i teorii upravleniya dvizheniem, Saransk, 1980, 134–141 | MR

[10] Konkov A. A., “O resheniyakh neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Izv. RAN. Ser. matem., 65:2 (2001), 81–126 | DOI | MR | Zbl

[11] Dulina K. M., Korchemkina T. A., “Asimptoticheskaya klassifikatsiya reshenii uravneniya tipa Emdena–Faulera vtorogo poryadka s otritsatelnym potentsialom”, Vestn. SamGU, 2015, no. 6(128), 50–56