Lower bounds for the upper Lyapunov exponent in one-parameter families of Millionshchikov systems
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 171-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a special class of two-dimensional differential systems of the form $\dot {x}=(A(t)+\mu B(t))x$, in particular, the Lyapunov improper almost periodic systems constructed by V. M. Millionshchikov, it is shown that the upper characteristic exponent $\lambda_2(A + \mu B)$ is positive for all $\mu$ from a set of positiv Lebesgue measure.
@article{TSP_2014_30_30_a8,
     author = {A. V. Lipnitskii},
     title = {Lower bounds for the upper {Lyapunov} exponent in one-parameter families of {Millionshchikov} systems},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {171--177},
     year = {2014},
     volume = {30},
     number = {30},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a8/}
}
TY  - JOUR
AU  - A. V. Lipnitskii
TI  - Lower bounds for the upper Lyapunov exponent in one-parameter families of Millionshchikov systems
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 171
EP  - 177
VL  - 30
IS  - 30
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a8/
LA  - ru
ID  - TSP_2014_30_30_a8
ER  - 
%0 Journal Article
%A A. V. Lipnitskii
%T Lower bounds for the upper Lyapunov exponent in one-parameter families of Millionshchikov systems
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 171-177
%V 30
%N 30
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a8/
%G ru
%F TSP_2014_30_30_a8
A. V. Lipnitskii. Lower bounds for the upper Lyapunov exponent in one-parameter families of Millionshchikov systems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 171-177. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a8/

[1] Millionschikov V. M., “Dokazatelstvo suschestvovaniya nepravilnykh sistem lineinykh differentsialnykh uravnenii s pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 4:3 (1968), 391–396

[2] Millionschikov V. M., “Dokazatelstvo suschestvovaniya nepravilnykh sistem lineinykh differentsialnykh uravnenii s kvaziperiodicheskimi koeffitsientami”, Differents. uravneniya, 5:11 (1969), 1979–1983 ; 10:3 (1974), 569

[3] Lipnitskii A. V., “O reshenii V. M. Millionschikovym problemy Erugina”, Differents. uravneniya, 36:12 (2000), 1615–1620 | MR

[4] Oleinik O. A., Shubin M. A., “Mezhdunarodnaya konferentsiya vypusknikov mekhmata MGU”, UMN, 37:6 (1982), 261–285

[5] Filippov A. F., “O vozmuscheniyakh lineinoi sistemy s kvaziperiodicheskimi koeffitsientami”, Differents. uravneniya, 26:8 (1990), 1343–1348 | MR

[6] Broer H., Simo C., Bul. Soc. Bras. Mat., 29 (1998), 253–293 | DOI | Zbl

[7] Romero L. A., Torczynski J. R., Kraynik A. M., “A scaling law near the primary resonance of the quasiperiodic Mathieu equation”, Nonlinear Dynam., 64:4 (2011), 395–408 | DOI | MR

[8] Lipnitskii A. V., “O polozhitelnosti starshego pokazatelya Lyapunova v odnoparametricheskikh semeistvakh lineinykh differentsialnykh sistem”, Differents. uravneniya, 45:8 (2009), 1095–1101 | MR | Zbl

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR