Lyapunov equivalence of systems with unbounded coefficients
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 161-170

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any linear system of homogeneous differential equations is Lyapunov equivalent to a system of the same order with piecewise constant coefficients, while a system with a uniformly small perturbation is Lyapunov equivalent to the same system with a piecewise constant perturbation of the same small magnitude.
@article{TSP_2014_30_30_a7,
     author = {V. I. Zalygina},
     title = {Lyapunov equivalence of systems with unbounded coefficients},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {30},
     number = {30},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/}
}
TY  - JOUR
AU  - V. I. Zalygina
TI  - Lyapunov equivalence of systems with unbounded coefficients
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 161
EP  - 170
VL  - 30
IS  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/
LA  - ru
ID  - TSP_2014_30_30_a7
ER  - 
%0 Journal Article
%A V. I. Zalygina
%T Lyapunov equivalence of systems with unbounded coefficients
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 161-170
%V 30
%N 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/
%G ru
%F TSP_2014_30_30_a7
V. I. Zalygina. Lyapunov equivalence of systems with unbounded coefficients. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 161-170. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/