Lyapunov equivalence of systems with unbounded coefficients
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 161-170
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that any linear system of homogeneous differential equations is Lyapunov equivalent to a system of the same order with piecewise constant coefficients, while a system with a uniformly small perturbation is Lyapunov equivalent to the same system with a piecewise constant perturbation of the same small magnitude.
@article{TSP_2014_30_30_a7,
author = {V. I. Zalygina},
title = {Lyapunov equivalence of systems with unbounded coefficients},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {161--170},
year = {2014},
volume = {30},
number = {30},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/}
}
V. I. Zalygina. Lyapunov equivalence of systems with unbounded coefficients. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 161-170. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/
[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR
[2] Mazanik S. A., Preobrazovaniya Lyapunova lineinykh differentsialnykh sistem, BGU, Minsk, 2008