Lyapunov equivalence of systems with unbounded coefficients
    
    
  
  
  
      
      
      
        
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 161-170
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that any linear system of homogeneous differential equations is Lyapunov equivalent to a system of the same order with piecewise constant coefficients, while a system with a uniformly small perturbation is Lyapunov equivalent to the same system with a piecewise constant perturbation of the same small magnitude.
			
            
            
            
          
        
      @article{TSP_2014_30_30_a7,
     author = {V. I. Zalygina},
     title = {Lyapunov equivalence of systems with unbounded coefficients},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {30},
     number = {30},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/}
}
                      
                      
                    V. I. Zalygina. Lyapunov equivalence of systems with unbounded coefficients. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 161-170. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a7/
