Lyapunov reducibility of infinitesimal perturbations of equations and systems
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 145-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider two classes of infinitesimally small perturbations of a given linear differential equation with continuous, possibly unbounded, coefficients. The first class consists of its perturbations in the space of all linear systems and the second class consists of perturbations with somewhat slower decay but in a narrower space, namely the space of systems corresponding to single equations. It is shown that the values of a Lyapunov invariant functional on the first class belong to the range of the same functional on the second class. For systems with bounded coefficients, it is shown that the said sets coincide.
@article{TSP_2014_30_30_a6,
     author = {A. A. Erchenko},
     title = {Lyapunov reducibility of infinitesimal perturbations of equations and systems},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {145--160},
     year = {2014},
     volume = {30},
     number = {30},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/}
}
TY  - JOUR
AU  - A. A. Erchenko
TI  - Lyapunov reducibility of infinitesimal perturbations of equations and systems
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 145
EP  - 160
VL  - 30
IS  - 30
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/
LA  - ru
ID  - TSP_2014_30_30_a6
ER  - 
%0 Journal Article
%A A. A. Erchenko
%T Lyapunov reducibility of infinitesimal perturbations of equations and systems
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 145-160
%V 30
%N 30
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/
%G ru
%F TSP_2014_30_30_a6
A. A. Erchenko. Lyapunov reducibility of infinitesimal perturbations of equations and systems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 145-160. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[2] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Lan, SPb., 2008 | MR

[3] Izobov N. A., “O starshem pokazatele lineinoi sistemy s eksponentsialnymi vozmuscheniyami”, Differents. uravneniya, 5:7 (1969), 1186–1192 | MR | Zbl

[4] Izobov N. A., “Eksponentsialnye pokazateli lineinykh sistem i ikh vychislenie”, Dokl. AN BSSR, 26:1 (1982), 5–8 | MR

[5] Izobov N. A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006

[6] Sergeev I. N., “O predelnykh znacheniyakh lyapunovskikh pokazatelei lineinykh uravnenii”, Differents. uravneniya, 46:11 (2010), 1664–1665

[7] Sergeev I. N., “Ob upravlenii resheniyami lineinogo differentsialnogo uravneniya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 3, 25–33 | Zbl

[8] Erchenko A. A., “O sovpadenii eksponentsialnykh pokazatelei Izobova v klassakh lineinykh sistem i lineinykh uravnenii”, Differents. uravneniya, 47:6 (2011), 906

[9] Sergeev I. N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 9 (1983), 111–166 | Zbl

[10] Sergeev I. N., “O klassakh Bera pokazatelei lineinykh uravnenii”, Differents. uravneniya, 45:11, 1666