Lyapunov reducibility of infinitesimal perturbations of equations and systems
    
    
  
  
  
      
      
      
        
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 145-160
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider two classes of infinitesimally small perturbations of a given linear differential equation with continuous, possibly unbounded, coefficients. The first class consists of its perturbations in the space of all linear systems and the second class consists of perturbations with somewhat slower decay but in a narrower space, namely the space of systems corresponding to single equations. It is shown that the values of a Lyapunov invariant functional on the first class belong to the range of the same functional on the second class. For systems with bounded coefficients, it is shown that the said sets coincide.
			
            
            
            
          
        
      @article{TSP_2014_30_30_a6,
     author = {A. A. Erchenko},
     title = {Lyapunov reducibility of infinitesimal perturbations of equations and systems},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {145--160},
     publisher = {mathdoc},
     volume = {30},
     number = {30},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/}
}
                      
                      
                    TY - JOUR AU - A. A. Erchenko TI - Lyapunov reducibility of infinitesimal perturbations of equations and systems JO - Trudy Seminara im. I.G. Petrovskogo PY - 2014 SP - 145 EP - 160 VL - 30 IS - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/ LA - ru ID - TSP_2014_30_30_a6 ER -
A. A. Erchenko. Lyapunov reducibility of infinitesimal perturbations of equations and systems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 145-160. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a6/
