On lebesgue sets determined by asymptotic characteristics of solutions of differential equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 122-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider differential equations continuously depending on a parameter and study the dependence of various asymptotic characteristics of their solutions on that parameter from the standpoint of the Lebesgue sets determined by these characteristics.
@article{TSP_2014_30_30_a5,
     author = {A. N. Vetokhin},
     title = {On lebesgue sets determined by asymptotic characteristics of solutions of differential equations},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {122--144},
     year = {2014},
     volume = {30},
     number = {30},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a5/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - On lebesgue sets determined by asymptotic characteristics of solutions of differential equations
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 122
EP  - 144
VL  - 30
IS  - 30
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a5/
LA  - ru
ID  - TSP_2014_30_30_a5
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T On lebesgue sets determined by asymptotic characteristics of solutions of differential equations
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 122-144
%V 30
%N 30
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a5/
%G ru
%F TSP_2014_30_30_a5
A. N. Vetokhin. On lebesgue sets determined by asymptotic characteristics of solutions of differential equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 122-144. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a5/

[1] Perron O., “Ordnungszahlen linearer Differentialgleichugssysteme”, Math. Z., 31 (1930), 748–766 | DOI | MR | Zbl

[2] Izobov N. A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006

[3] Ber P., Teoriya razryvnykh funktsii, GTTI, M.–L., 1932

[4] Millionschikov V. M., “Formuly dlya pokazatelei Lyapunova semeistva endomorfizmov metrizovannogo vektornogo rassloeniya”, Mat. zametki, 39:1 (1986), 29–51

[5] Rakhimberdiev M. I., “O berovskom klasse pokazatelei Lyapunova”, Mat. zametki, 31:6 (1982), 925–931 | MR | Zbl

[6] Khausdorf F., Teoriya mnozhestv, GTTI, M.–L., 1934

[7] Baire R., “Sur la representation des functions discontinues”, Acta Math., 30 (1906), 1–48 | DOI | MR

[8] Baire R., “Sur la representation des functions discontinues”, Acta Math., 32 (1909), 97–176 | DOI | MR | Zbl

[9] Sergeev I. N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 111–166 | Zbl

[10] Vinograd R. E., “O tsentralnom kharakteristicheskom pokazatele sistemy differentsialnykh uravnenii”, Mat. sb., 42:2 (1957), 207–222 | Zbl

[11] Bogdanov Yu. S., “Ob asimptoticheski ekvivalentnykh lineinykh differentsialnykh sistemakh”, Differents. uravneniya, 1:6 (1965), 707–716 | Zbl

[12] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR