Bohl exponents and baire classes of functions
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 94-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Bohl exponents of a linear homogeneous system of differential equations are considered as functions of a parameter on its right-hand side which continuously depends on this parameter. It is shown that the Bohl exponents can be of the second or the fourth Baire class, according to the type of exponent. A similar result is established for Bohl exponents of diffeomorphisms of a Riemannian manifold.
@article{TSP_2014_30_30_a4,
     author = {V. V. Bykov},
     title = {Bohl exponents and baire classes of functions},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {94--121},
     year = {2014},
     volume = {30},
     number = {30},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a4/}
}
TY  - JOUR
AU  - V. V. Bykov
TI  - Bohl exponents and baire classes of functions
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 94
EP  - 121
VL  - 30
IS  - 30
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a4/
LA  - ru
ID  - TSP_2014_30_30_a4
ER  - 
%0 Journal Article
%A V. V. Bykov
%T Bohl exponents and baire classes of functions
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 94-121
%V 30
%N 30
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a4/
%G ru
%F TSP_2014_30_30_a4
V. V. Bykov. Bohl exponents and baire classes of functions. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 94-121. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a4/

[1] Millionschikov V. M., “Berovskie klassy funktsii i pokazateli Lyapunova. I”, Differents. uravneniya, 16:8 (1980), 1408–1416 | MR

[2] Millionschikov V. M., “O tipichnykh svoistvakh uslovnoi eksponentsialnoi ustoichivosti. I”, Differents. uravneniya, 19:8 (1983), 1344–1356 | MR

[3] Rakhimberdiev M. I., “O berovskom klasse pokazatelei Lyapunova”, Mat. zametki, 31:6 (1982), 925–931 | MR | Zbl

[4] Agafonov V. G., “K berovskoi klassifikatsii pokazatelei Lyapunova”, Differents. uravneniya, 27:8 (1991), 1466

[5] Feklin V. G., “Klassifikatsiya nizhnikh vspomogatelnykh pokazatelei po Beru”, Differents. uravneniya, 28:11 (1992), 2009 | MR

[6] Sergeev I. N., “Klass Bera minimalnykh pokazatelei trekhmernykh lineinykh sistem”, UMN, 50:4 (1995), 109

[7] Shiryaev K. E., “O klasse Bera pokazatelei lineinykh sistem”, Differents. uravneniya, 31:8 (1995), 1381–1384 | MR | Zbl

[8] Vetokhin A. N., “Klass Bera minimalnykh polunepreryvnykh snizu minorant pokazatelei Lyapunova”, Differents. uravneniya, 34:10 (1998), 1313–1317 | MR | Zbl

[9] Bykov V. V., Salov E. E., “O klasse Bera minorant pokazatelei Lyapunova”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 1, 33–40 | Zbl

[10] Millionschikov V. M., “Nereshennaya zadacha o generalnykh pokazatelyakh”, Differents. uravneniya, 25:6 (1989), 1095

[11] Millionschikov V. M., “Otnositelnye pokazateli Bolya i klassy funktsii Bera”, Differents. uravneniya, 26:6 (1990), 1087

[12] Millionschikov V. M., “Pokazatel Bolya lineinoi sistemy, koeffitsienty kotoroi mogut byt neogranichennymi”, Differents. uravneniya, 27:8 (1991), 1461–462

[13] Millionschikov V. M., “Uslovnye pokazateli Bolya lineinykh sistem s neogranichennymi koeffitsientami”, Differents. uravneniya, 1464

[14] Khausdorf F., Teoriya mnozhestv, ONTI, M.–L., 1937

[15] Ber R., Teoriya razryvnykh funktsii, GTTI, M.–L., 1932

[16] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[17] Millionschikov V. M., “Formuly dlya pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Trudy In-ta prikl. matematiki im. I. N. Vekua, 22, Tbilisi, 1987, 150–178

[18] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[19] Millionschikov V. M., “Nereshennaya zadacha iz teorii uslovnoi ustoichivosti”, UMN, 46:6 (1991), 204

[20] Vetokhin A. N., “K berovskoi klassifikatsii ostatochnykh pokazatelei”, Differents. uravneniya, 34:8 (1998), 1039–1042 | MR | Zbl

[21] Vetokhin A. N., “O klasse Bera verkhnikh tsentralnykh pokazatelei i verkhnikh osobykh pokazatelei”, Differents. uravneniya, 31:9 (1995), 1600

[22] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR

[23] Millionschikov V. M., “O tipichnykh svoistvakh uslovnoi eksponentsialnoi ustoichivosti. VIII”, Differents. uravneniya, 20:11 (1984), 1889–1896 | MR

[24] Millionschikov V. M., “Pokazateli Lyapunova kak funktsii parametra”, Mat. sb., 137(179):3(11) (1988), 364–380

[25] Millionschikov V. M., “Pokazateli Lyapunova semeistva endomorfizmov metrizovannogo vektornogo rassloeniya”, Mat. zametki, 38:1 (1985), 92–109 | MR

[26] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[27] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966 | MR

[28] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial URSS, M., 2004 | MR