A stabilization indices problem
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 353-363
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct families of homogeneous linear differential equations (with coefficients continuously depending on a parameter) possessing certain topologically generic (in the sense of R. Baire) properties, such as the absence of various types of semicontinuity of their various conditional stability characteristics.
@article{TSP_2014_30_30_a18,
author = {A. I. Shutova},
title = {A stabilization indices problem},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {353--363},
year = {2014},
volume = {30},
number = {30},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a18/}
}
A. I. Shutova. A stabilization indices problem. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 353-363. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a18/
[1] Millionschikov V. M., “Pokazateli Lyapunova kak funktsii parametra”, Mat. sb., 137:3 (1988), 364–380
[2] Ber R., Teoriya razryvnykh funktsii, GTTI, M.–L., 1932
[3] Khausdorf F., Teoriya mnozhestv, ONTI, M.–L., 1937
[4] Millionschikov V. M., “Zadachi o stabilizatsionnykh indeksakh”, Differents. uravneniya, 29:11 (1993), 2017
[5] Millionschikov V. M., “Tipichnoe svoistvo uslovnoi ustoichivosti lineinoi sistemy, zavisyaschei ot parametra”, Differents. uravneniya, 27:8 (1991), 1460
[6] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR
[7] Izobov N. A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006