Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 287-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is a review of some previous and new results on integrable cases in the dynamics of a three-dimensional rigid body in a nonconservative field of forces. These problems are stated in terms of dynamical systems with the so-called zero-mean variable dissipation. Finding a complete set of transcendental first integrals for systems with dissipation is a very interesting problem that has been studied in many publications. We introduce a new class of dynamical systems with a periodic coordinate. Since such systems possess some nontrivial groups of symmetries, it can be shown that they have variable dissipation whose mean value over the period of the periodic coordinate vanishes, although in various regions of the phase space there may be energy supply or scattering. The results obtained allow us to examine some dynamical systems associated with the motion of rigid bodies and find some cases in which the equations of motion can be integrated in terms of transcendental functions that can be expressed as finite combinations of elementary functions.
@article{TSP_2014_30_30_a16,
     author = {M. V. Shamolin},
     title = {Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {287--350},
     year = {2014},
     volume = {30},
     number = {30},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a16/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 287
EP  - 350
VL  - 30
IS  - 30
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a16/
LA  - ru
ID  - TSP_2014_30_30_a16
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 287-350
%V 30
%N 30
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a16/
%G ru
%F TSP_2014_30_30_a16
M. V. Shamolin. Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 287-350. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a16/

[1] Andronov A. A., Sobranie trudov, Izd-vo AN SSSR, M., 1956

[2] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250

[3] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR

[4] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967 | MR

[5] Arnold V. I., “Gamiltonovost uravnenii Eilera dinamiki tverdogo tela v idealnoi zhidkosti”, UMN, 24:3 (1969), 225–226 | MR | Zbl

[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[7] Arnold V.I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985 | MR

[8] Bendikson I., “O krivykh opredelyaemykh differentsialnymi uravneniyami”, UMN, 9 (1941)

[9] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, DAN SSSR, 287:5 (1986), 1105–1108 | MR

[10] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[11] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[12] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN, 380:1 (2001), 47–50

[13] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN, 383:5 (2002), 635–637

[14] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbf{R}^{n}$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 5, 37–41 | Zbl

[15] Georgievskii D. V., Shamolin M. V., “Valerii Vladimirovich Trofimov”, Sovremennaya matematika. Fundamentalnye napravleniya, 23, 2007, 5–6 | MR

[16] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950 | MR

[17] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.–L., 1953 | MR

[18] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshav. univ. izv., 1916, no. 3 S. 1–15.

[19] Grobman D. M., “Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v $n$-mernom prostranstve”, Mat. sb., 56:1 (1962), 77–94 | MR | Zbl

[20] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy. I”, Itogi nauki i tekhniki. VINITI. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, 1985, 179–284

[21] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, MGU, M., 1980 | MR

[22] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[23] Kozlov V. V., Kolesnikov N. N., “Ob integriruemosti gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1979, no. 6, 88–91 | Zbl

[24] Kolmogorov A. N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Mezhdunarodnyi matematicheskii kongress v Amsterdame, Fizmatgiz, M., 1961, 187–208

[25] Levshets S., Geometricheskaya teoriya differentsialnykh uravnenii, IL, M., 1961

[26] Lyapunov A. M., “Novyi sluchai integriruemosti uravnenii dvizheniya tverdogo tela v zhidkosti”, Sobr. soch., v. I, Izd-vo AN SSSR, M., 1954, 320–324

[27] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki. Sovremennye problemy matematiki, 11 (1978), 5–112, VINITI, M.

[28] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1986 | MR

[29] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949 | MR

[30] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR

[31] Novikov S. P., Shmeltser I., “Periodicheskie resheniya uravneniya Kirkhgofa svobodnogo dvizheniya tverdogo tela i idealnoi zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LMSh). I”, Funktsion. analiz i ego pril., 15:3 (1981), 54–66 | MR

[32] Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika: Sb. per., 13:2 (1969), 145–155

[33] Palis Zh., Di Melu V., Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986 | MR

[34] Pliss V. A., “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vestn. LGU, ser. matem., 13 (1960), 15–23 | Zbl

[35] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1967 | MR

[36] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947

[37] Puankare A., Novye metody v nebesnoi mekhanike: Izbr. trudy, v. 1, Nauka, M., 1971; т. 2, 1972

[38] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 3, 51–54 | Zbl

[39] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[40] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti, Kharkov, 1893

[41] Trofimov V. V., “Obobschennye klassy Maslova lagranzhevykh poverkhnostei v simplekticheskikh mnogoobraziyakh”, UMN, 43:4 (1988), 169–170

[42] Trofimov V. V., Fomenko A. T., “Dinamicheskie sistemy na orbitakh lineinykh predstavlenii i polnaya integriruemost nekotorykh gidrodinamicheskikh sistem”, Funktsion. analiz i ego pril., 17:1 (1983), 31–39 | MR | Zbl

[43] Trofimov V. V., Shamolin M. V., “Dissipativnye sistemy s netrivialnymi obobschennymi klassami Arnolda–Maslova (tez. dokl. seminara po vektor. i tenzor. analizu im. P. K. Rashevskogo)”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2000, no. 2, 62

[44] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[45] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[46] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1992, no. 2, 52–56 | MR | Zbl

[47] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, no. 1, 52–58 | MR | Zbl

[48] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. matem. i mekhan., 57:4 (1993), 40–49 | MR | Zbl

[49] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1993, no. 2, 66–70 | MR | Zbl

[50] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, no. 1, 68–71 | MR

[51] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN, 337:5 (1994), 611–614 | Zbl

[52] Shamolin M. V., “Opredelenie otnositelnoi grubosti i dvuparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela”, UMN, 51:1 (1996), 175–176 | DOI | MR | Zbl

[53] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN, 349:2 (1996), 193–197 | Zbl

[54] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Matematika. mekhanika, 1996, no. 4, 57–69. | MR | Zbl

[55] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1997, no. 2, 65–68.

[56] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, UMN, 52:3 (1997), 177–178. | DOI | MR | Zbl

[57] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, UMN, 53:3 (1998), 209–210. | DOI | MR | Zbl

[58] Shamolin M. V., “Semeistvo portretov s predelnymi tsiklami v ploskoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1998, no. 6, 29–37.

[59] Shamolin M. V., “Nekotorye klassy chastnykh reshenii v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1999, no. 2, 178–189. | MR

[60] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 364:5 (1999), 627–629. | MR | Zbl

[61] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, UMN, 54:5 (1999), 181–182. | DOI | MR | Zbl

[62] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 371:4 (2000), 480–483. | MR

[63] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, UMN, 55:3 (2000), 187–188. | DOI | MR | Zbl

[64] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN, 375:3 (2000), 343–346. | MR

[65] Shamolin M. V., “Sluchai integriruemosti uravnenii prostranstvennoi dinamiki tverdogo tela”, Prikl. mekhanika, 37:6 (2001), 74–82. | MR | Zbl

[66] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2001, no. 5, 22–28. | Zbl

[67] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, UMN, 57:1 (2002), 169–170. | DOI | MR

[68] Shamolin M. V., “Geometricheskoe predstavlenie dvizheniya v odnoi zadache o vzaimodeistvii tela so sredoi”, Prikl. mekhanika, 40:4 (2004), 137–144. | MR | Zbl

[69] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN, 403:4 (2005), 482–485.

[70] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. matematika i mekhanika, 69, vyp. 6 (2005), 1003–1010. | Zbl

[71] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $\mathrm{so}(4)\times\mathbf{R}^{n}$”, UMN, 60, vyp. 6 (2005), 233–234. | DOI | Zbl

[72] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke sredy pri uchete vraschatelnykh proizvodnykh momenta sily ee vozdeistviya”, Izv. RAN. MTT, 2007, no. 3, 187–192 | MR

[73] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, UMN, 62 (2007), 169–170 | DOI | Zbl

[74] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[75] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Izd. 2-e pererab. i dop., Ekzamen, M., 2007

[76] Shamolin M. V., “Trekhparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 418:1 (2008), 46–51 | MR | Zbl

[77] Errousmit D., Pleis K., Obyknovennye differentsialnye uravneniya. Kachestvennaya teoriya s prilozheniyami, Mir, M., 1986

[78] Shamolin M. V., “Some classical problems in a three dimensional dynamics of a rigid body interacting with a medium”, Proc. of ICTACEM'98 (Kharagpur, India, Dec. 1–5, 1998), Aerospace Engineering Dep., Indian Inst. of Technology, Kharagpur, India, 1998, CD. Printed at Printek Point, Technology Market, KGP-2

[79] Shamolin M. V., “Structural stability in 3D dynamics of a rigid”, CD-Proc. of WCSMO-3 (Buffalo, NY, May 17–21, 1999), Buffalo, NY, 1999

[80] Shamolin M. V., “New families of many-dimensional phase portraits in dynamics of a rigid body interacting with a medium”, CD-Proc. of 16th IMACS World Cong. (Lausanne, Switzerland, August 21–25, 2000), EPFL, Lausanne, 2000 | MR

[81] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2526–2555 | DOI | MR

[82] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, J. Math. Sci., 114:1 (2003), 919–975 | DOI | MR | Zbl

[83] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, J. Math. Sci., 122:1 (2004), 2841–2915 | DOI | MR | Zbl

[84] Shamolin M. V., “Structural stable vector fields in rigid body dynamics”, Proc. of 8th Conf. on Dynamical Systems (Theory and Applications), DSTA 2005 (Lodz, Poland, Dec. 12–15, 2005), v. 1, Tech. Univ. Lodz, 2005, 429–436

[85] Shamolin M. V., “The cases of integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium”, Proc. of 9th Conf. on Dynamical Systems (Theory and Applications), DSTA 2007 (Lodz, Poland, Dec. 17–20, 2007), v. 1, Tech. Univ. Lodz, 2007, 415–422 | MR