The existence of a linear third-order equation with a countable frequency spectrum
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 242-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a nonautonomous homogeneous linear third-order equation with the following property: the set of characteristic frequencies of zeroes of its solutions contains a countable set of distinct essential (i.e., taken on a set or positive measure in the space of solutions) values.
@article{TSP_2014_30_30_a13,
author = {M. V. Smolentsev},
title = {The existence of a linear third-order equation with a countable frequency spectrum},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {242--251},
publisher = {mathdoc},
volume = {30},
number = {30},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a13/}
}
TY - JOUR AU - M. V. Smolentsev TI - The existence of a linear third-order equation with a countable frequency spectrum JO - Trudy Seminara im. I.G. Petrovskogo PY - 2014 SP - 242 EP - 251 VL - 30 IS - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a13/ LA - ru ID - TSP_2014_30_30_a13 ER -
M. V. Smolentsev. The existence of a linear third-order equation with a countable frequency spectrum. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 242-251. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a13/