Wandering of solutions of two-dimensional diagonal and triangular systems of differential equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 221-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider some classes of two-dimensional diagonal and triangular linear nonautonomous systems of differential equations with bounded coefficients. It is shown that the upper, as well as the lower, walk exponents and wandering exponents of all their nontrivial solutions are equal to zero, except, possibly, the upper wandering exponent for a triangular system (an example is constructed in which the latter exponent is positive).
@article{TSP_2014_30_30_a12,
     author = {V. V. Mitsenko},
     title = {Wandering of solutions of two-dimensional diagonal and triangular systems of differential equations},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {221--241},
     year = {2014},
     volume = {30},
     number = {30},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a12/}
}
TY  - JOUR
AU  - V. V. Mitsenko
TI  - Wandering of solutions of two-dimensional diagonal and triangular systems of differential equations
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 221
EP  - 241
VL  - 30
IS  - 30
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a12/
LA  - ru
ID  - TSP_2014_30_30_a12
ER  - 
%0 Journal Article
%A V. V. Mitsenko
%T Wandering of solutions of two-dimensional diagonal and triangular systems of differential equations
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 221-241
%V 30
%N 30
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a12/
%G ru
%F TSP_2014_30_30_a12
V. V. Mitsenko. Wandering of solutions of two-dimensional diagonal and triangular systems of differential equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 221-241. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a12/

[1] Sergeev I. N., “Opredelenie kharakteristik bluzhdaemosti reshenii lineinoi sistemy”, Differents. uravneniya, 46:11 (2010)

[2] Mitsenko V. V., “Bluzhdaemost reshenii dvumernykh treugolnykh i diagonalnykh differentsialnykh sistem”, Differents. uravneniya, 48:6 (2012), 907–908

[3] Bogachev K. Yu., Praktikum na EVM. Metody resheniya lineinykh sistem i nakhozhdeniya sobstvennykh znachenii, MGU, M., 1988