Precise estimates of the walk speed of solutions of second-order linear systems
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 184-212

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some classes of nonautonomous second-order systems of differential equations whose coefficients are bounded by a given constant $M$, in particular, diagonal systems, triangular systems, and systems corresponding to a single equation. It is shown that the walk speeds of solutions of various systems from these classes fill up a certain interval, and precise estimates are obtained for the length of that interval in terms of the value of $M$.
@article{TSP_2014_30_30_a10,
     author = {M. D. Lysak},
     title = {Precise estimates of the walk speed of solutions of second-order linear systems},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {184--212},
     publisher = {mathdoc},
     volume = {30},
     number = {30},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/}
}
TY  - JOUR
AU  - M. D. Lysak
TI  - Precise estimates of the walk speed of solutions of second-order linear systems
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2014
SP  - 184
EP  - 212
VL  - 30
IS  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/
LA  - ru
ID  - TSP_2014_30_30_a10
ER  - 
%0 Journal Article
%A M. D. Lysak
%T Precise estimates of the walk speed of solutions of second-order linear systems
%J Trudy Seminara im. I.G. Petrovskogo
%D 2014
%P 184-212
%V 30
%N 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/
%G ru
%F TSP_2014_30_30_a10
M. D. Lysak. Precise estimates of the walk speed of solutions of second-order linear systems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 184-212. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/