Precise estimates of the walk speed of solutions of second-order linear systems
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 184-212
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider some classes of nonautonomous second-order systems of differential equations whose coefficients are bounded by a given constant $M$, in particular, diagonal systems, triangular systems, and systems corresponding to a single equation. It is shown that the walk speeds of solutions of various systems from these classes fill up a certain interval, and precise estimates are obtained for the length of that interval in terms of the value of $M$.
@article{TSP_2014_30_30_a10,
author = {M. D. Lysak},
title = {Precise estimates of the walk speed of solutions of second-order linear systems},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {184--212},
year = {2014},
volume = {30},
number = {30},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/}
}
M. D. Lysak. Precise estimates of the walk speed of solutions of second-order linear systems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 184-212. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/
[1] Sergeev I. N., “Opredelenie kharakteristik bluzhdaemosti reshenii lineinoi sistemy”, Differents. uravneniya, 46:6 (2010), 902
[2] Lysak M. D., “Tochnye otsenki skorosti bluzhdaniya reshenii lineinykh sistem”, Differents. uravneniya, 46:11 (2010), 1670–1671
[3] Lysak M. D., “Tochnye otsenki skorosti bluzhdaniya reshenii lineinykh uravnenii vtorogo poryadka”, Differents. uravneniya, 48:6 (2012), 907