Precise estimates of the walk speed of solutions of second-order linear systems
    
    
  
  
  
      
      
      
        
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 184-212
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider some classes of nonautonomous second-order systems of differential equations whose coefficients are bounded by a given constant $M$, in particular, diagonal systems, triangular systems, and systems corresponding to a single equation. It is shown that the walk speeds of solutions of various systems from these classes fill up a certain interval, and precise estimates are obtained for the length of that interval in terms of the value of $M$.
			
            
            
            
          
        
      @article{TSP_2014_30_30_a10,
     author = {M. D. Lysak},
     title = {Precise estimates of the walk speed of solutions of second-order linear systems},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {184--212},
     publisher = {mathdoc},
     volume = {30},
     number = {30},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/}
}
                      
                      
                    TY - JOUR AU - M. D. Lysak TI - Precise estimates of the walk speed of solutions of second-order linear systems JO - Trudy Seminara im. I.G. Petrovskogo PY - 2014 SP - 184 EP - 212 VL - 30 IS - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/ LA - ru ID - TSP_2014_30_30_a10 ER -
M. D. Lysak. Precise estimates of the walk speed of solutions of second-order linear systems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 30 (2014) no. 30, pp. 184-212. http://geodesic.mathdoc.fr/item/TSP_2014_30_30_a10/
