Introduction to the theory of two-scale convergence
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 281-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2013_29_29_a6,
     author = {V. V. Zhikov and G. A. Yosifian},
     title = {Introduction to the theory of two-scale convergence},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {281--332},
     year = {2013},
     volume = {29},
     number = {29},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a6/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - G. A. Yosifian
TI  - Introduction to the theory of two-scale convergence
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2013
SP  - 281
EP  - 332
VL  - 29
IS  - 29
UR  - http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a6/
LA  - ru
ID  - TSP_2013_29_29_a6
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A G. A. Yosifian
%T Introduction to the theory of two-scale convergence
%J Trudy Seminara im. I.G. Petrovskogo
%D 2013
%P 281-332
%V 29
%N 29
%U http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a6/
%G ru
%F TSP_2013_29_29_a6
V. V. Zhikov; G. A. Yosifian. Introduction to the theory of two-scale convergence. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 281-332. http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a6/

[1] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[2] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[3] Zhikov V. V., “O dvukhmasshtabnoi skhodimosti”, Tr. seminara im. I. G. Petrovskogo, 23 (2003), 149–186

[4] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[6] Jikov V. V., Kozlov S. M., Olejnik O. A., Homogenization of differential operators and integral functionals, Springer, Berlin, 1994 | MR

[7] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo Mosk. un-ta, M., 1990 | MR

[8] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl

[9] Zhikov V. V., “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58 | MR

[10] Arbogast T., Douglas J., Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl

[11] Homogenization and Porous Media, Interdisciplinary Appl. Math. Ser., 6, ed. U. Hornung, Springer, New York, 1997 | MR

[12] Sandrakov G. V., “Osrednenie nestatsionarnykh uravnenii s kontrastnymi koeffitsientami”, Dokl. RAN, 335:5 (1997), 605–608 | MR

[13] Smyshlyaev V. P., “Propagation and localization of elastic waves in highly anisotropic composites via homogenization”, invited article for special issue in honour of Prof. G. Milton, Mechanics of Materials, 41:4 (2009), 434–447 | DOI

[14] Bouchitte G., Buttazzo G., Seppecher P., “Energies with respect to a measure and applications to low dimensional structures”, Calc. Var. Partial Differential Equations, 5:1 (1997), 37–54 | DOI | MR | Zbl

[15] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[16] Zhikov V. V., Pastukhova S. E., “Ob usrednennom tenzore na setkakh”, Tr. MIRAN im. V. A. Steklova, 250, 2005, 105–111 | MR | Zbl

[17] Zhikov V. V., Pastukhova S. E., “Ob usrednennom tenzore na setkakh”, Dokl. RAN, 391:4 (2003), 443–447 | MR | Zbl