Necessary and sufficient conditions of stabilization of solutions of the first boundary-value problem for a parabolic equation
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 248-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2013_29_29_a5,
     author = {V. N. Denisov},
     title = {Necessary and sufficient conditions of stabilization of solutions of the first boundary-value problem for a parabolic equation},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {248--280},
     year = {2013},
     volume = {29},
     number = {29},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a5/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - Necessary and sufficient conditions of stabilization of solutions of the first boundary-value problem for a parabolic equation
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2013
SP  - 248
EP  - 280
VL  - 29
IS  - 29
UR  - http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a5/
LA  - ru
ID  - TSP_2013_29_29_a5
ER  - 
%0 Journal Article
%A V. N. Denisov
%T Necessary and sufficient conditions of stabilization of solutions of the first boundary-value problem for a parabolic equation
%J Trudy Seminara im. I.G. Petrovskogo
%D 2013
%P 248-280
%V 29
%N 29
%U http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a5/
%G ru
%F TSP_2013_29_29_a5
V. N. Denisov. Necessary and sufficient conditions of stabilization of solutions of the first boundary-value problem for a parabolic equation. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 248-280. http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a5/

[2] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[3] Aronson D. G., “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa (3)., 22:4 (1968), 607–694 | MR | Zbl

[4] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[5] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80:4 (1958), 531–554 | DOI | MR

[6] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[7] Mukminov F. Kh., “O ravnomernoi stabilizatsii reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Mat. sb., 131:11 (1990), 1486–1509 | MR

[8] Guschin A. K., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Mat. sb., 119:4 (1982), 451–507 | MR

[9] Stampacchia G., “Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinuous”, Ann. Inst. Fourier, 15:1 (1965), 189–258 | DOI | MR | Zbl

[10] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[11] Watson N. A., “Thermal capacity”, Proc. London Math. Soc., 37 (1978), 372–662 | MR

[12] Landis E. M., “Neobkhodimye i dostatochnye usloviya regulyarnosti granichnoi tochki dlya zadachi Dirikhle dlya uravneniya teploprovodnosti”, DAN SSSR, 185:3 (1969), 517–520 | MR | Zbl

[13] Kaizer V., Myuller B., “Ustranimye mnozhestva dlya uravneniya teploprovodnosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1973, no. 5, 26–32 | MR

[14] Lanconelli E., “Sur problema di Dirichlet per l'equasione del calore”, Ann. Mat. Pura Appl., 77 (1973), 83–114 | DOI | MR

[15] Alkhutov Yu. A., “Ustranimye osobennosti reshenii parabolicheskikh uravnenii vtorogo poryadka”, Mat. zametki, 50:5 (1991), 9–17 | MR | Zbl

[16] Gariepy R., Ziemer W. P., “Thermal capacity and boundary regularity”, J. Different. Equations, 45 (1982), 374–388 | DOI | MR | Zbl

[17] Littman W., Stampacchia G., Wainberger N. F., “Regular points for elliptic equations with discontinious coefficients”, Ann. Scuola Norm. Sup. Piza., 17 (1963), 43–77 | MR | Zbl

[18] Denisov V. N., “Neobkhodimye i dostatochnye usloviya stabilizatsii resheniya zadachi Dirikhle dlya uravneniya teploprovodnosti”, Dokl. RAN, 407:2 (2006), 163–166 | MR