Uniform estimates of solutions of a nonlinear third-order differential equation
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 146-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2013_29_29_a2,
     author = {I. V. Astashova},
     title = {Uniform estimates of solutions of a nonlinear third-order differential equation},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {146--161},
     year = {2013},
     volume = {29},
     number = {29},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a2/}
}
TY  - JOUR
AU  - I. V. Astashova
TI  - Uniform estimates of solutions of a nonlinear third-order differential equation
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2013
SP  - 146
EP  - 161
VL  - 29
IS  - 29
UR  - http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a2/
LA  - ru
ID  - TSP_2013_29_29_a2
ER  - 
%0 Journal Article
%A I. V. Astashova
%T Uniform estimates of solutions of a nonlinear third-order differential equation
%J Trudy Seminara im. I.G. Petrovskogo
%D 2013
%P 146-161
%V 29
%N 29
%U http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a2/
%G ru
%F TSP_2013_29_29_a2
I. V. Astashova. Uniform estimates of solutions of a nonlinear third-order differential equation. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 146-161. http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a2/

[1] Kondratev V. A., “O kachestvennykh svoistvakh reshenii polulineinykh ellipticheskikh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 16 (1991), 186–190

[2] Astashova I. V., “O kachestvennykh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, UMN, 51:5 (1996), 185 | DOI

[3] Astashova I. V., “Estimates of solutions to one-dimensional Schrödinger equation”, Proc. of the 3rd Intern. ISAAC Congr., v. II, World Scientific: Progress in Analysis, World Sci. Press, Singapore, 2003, 955–960 | MR

[4] Konkov A. A., “O resheniyakh neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 65:2 (2001), 81–126 | DOI | MR | Zbl

[5] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIRAN im. V. A. Steklova, 234, 2001 | MR | Zbl

[6] Astashova I. V., “O ravnomernykh otsenkakh reshenii kvazilineinykh differentsialnykh neravenstv”, Differents. uravneniya, 42:6 (2006), 855–856

[7] Astashova I. V., “Ravnomernye otsenki reshenii kvazilineinykh differentsialnykh neravenstv”, Tr. seminara im. I. G. Petrovskogo, 26 (2007), 27–36

[8] Astashova I. V., “Ravnomernye otsenki polozhitelnykh reshenii kvazilineinykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 72:6 (2008), 85–104 | DOI | MR | Zbl

[9] Kondratev V. A., Samovol B. C., “O nekotorykh asimptoticheskikh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, Differents. uravneniya, 17:4 (1981), 749–750

[10] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl

[11] Astashova I. V., “Primenenie dinamicheskikh sistem k issledovaniyu asimptoticheskikh svoistv reshenii nelineinykh differentsialnykh uravnenii vysokikh poryadkov”, Itogi nauki i tekhniki. Ser. Sovrem. matematika i ee prilozheniya, 8 (2003), 3–33

[12] Astashova I. V., “Ravnomernye otsenki reshenii nelineinogo differentsialnogo uravneniya tipa Emdena–Faulera tretego poryadka”, Differents. uravneniya, 46:11 (2010), 1669–1670 | MR

[13] Astashova I. V., “O suschestvovanii reshenii s zadannoi oblastyu opredeleniya nelineinogo differentsialnogo uravneniya tretego poryadka”, Differents. uravneniya, 47:6 (2011), 899–900

[14] Astashova I. V., Kachestvennye svoistva reshenii kvazilineinykh obyknovennykh differentsialnykh uravnenii, MESI, M., 2010