Semilocal smoothing splines
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 443-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2013_29_29_a13,
     author = {D. A. Silaev},
     title = {Semilocal smoothing splines},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {443--454},
     year = {2013},
     volume = {29},
     number = {29},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a13/}
}
TY  - JOUR
AU  - D. A. Silaev
TI  - Semilocal smoothing splines
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2013
SP  - 443
EP  - 454
VL  - 29
IS  - 29
UR  - http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a13/
LA  - ru
ID  - TSP_2013_29_29_a13
ER  - 
%0 Journal Article
%A D. A. Silaev
%T Semilocal smoothing splines
%J Trudy Seminara im. I.G. Petrovskogo
%D 2013
%P 443-454
%V 29
%N 29
%U http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a13/
%G ru
%F TSP_2013_29_29_a13
D. A. Silaev. Semilocal smoothing splines. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 443-454. http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a13/

[1] Silaev D. A., Yakushina G. I., “Priblizhenie $S$-splainami gladkikh funktsii”, Tr. seminara im. I. G. Petrovskogo, 10 (1984), 197 | MR | Zbl

[2] Silaev D. A., Amilyuschenko A. V., Lukyanov A. I., Korotaev D. O., “Polulokalnye sglazhivayuschie splainy klassa $C^1$”, Tr. seminara im. I. G. Petrovskogo, 26 (2007), 347–367 | MR

[3] Silaev D. A., Amiliyushenko A. V., Luk'janov A. I., Korotaev D. O., “Semilocal smoothing spline of class $C^1$”, J. Math. Sci., 143:4 (2007), 3401–3414 | DOI | MR

[4] Silaev D. A., “Dvazhdy nepreryvno differentsiruemyi polulokalnyi sglazhivayuschii splain”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 11–19 | MR