Semilocal smoothing splines
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 443-454
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TSP_2013_29_29_a13,
author = {D. A. Silaev},
title = {Semilocal smoothing splines},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {443--454},
year = {2013},
volume = {29},
number = {29},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a13/}
}
D. A. Silaev. Semilocal smoothing splines. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 443-454. http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a13/
[1] Silaev D. A., Yakushina G. I., “Priblizhenie $S$-splainami gladkikh funktsii”, Tr. seminara im. I. G. Petrovskogo, 10 (1984), 197 | MR | Zbl
[2] Silaev D. A., Amilyuschenko A. V., Lukyanov A. I., Korotaev D. O., “Polulokalnye sglazhivayuschie splainy klassa $C^1$”, Tr. seminara im. I. G. Petrovskogo, 26 (2007), 347–367 | MR
[3] Silaev D. A., Amiliyushenko A. V., Luk'janov A. I., Korotaev D. O., “Semilocal smoothing spline of class $C^1$”, J. Math. Sci., 143:4 (2007), 3401–3414 | DOI | MR
[4] Silaev D. A., “Dvazhdy nepreryvno differentsiruemyi polulokalnyi sglazhivayuschii splain”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 11–19 | MR