Mean value theorems for linear partial differential equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 396-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2013_29_29_a10,
     author = {I. P. Polovinkin},
     title = {Mean value theorems for linear partial differential equations},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {396--404},
     year = {2013},
     volume = {29},
     number = {29},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a10/}
}
TY  - JOUR
AU  - I. P. Polovinkin
TI  - Mean value theorems for linear partial differential equations
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2013
SP  - 396
EP  - 404
VL  - 29
IS  - 29
UR  - http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a10/
LA  - ru
ID  - TSP_2013_29_29_a10
ER  - 
%0 Journal Article
%A I. P. Polovinkin
%T Mean value theorems for linear partial differential equations
%J Trudy Seminara im. I.G. Petrovskogo
%D 2013
%P 396-404
%V 29
%N 29
%U http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a10/
%G ru
%F TSP_2013_29_29_a10
I. P. Polovinkin. Mean value theorems for linear partial differential equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 29 (2013) no. 29, pp. 396-404. http://geodesic.mathdoc.fr/item/TSP_2013_29_29_a10/

[1] Gilbarg D., Trudinger P., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[2] Ilin V. A., “O ryadakh Fure po fundamentalnym sistemam funktsii operatora Beltrami”, Differents. uravneniya, 5:11 (1969), 1940–1978 | MR | Zbl

[3] Ilin V. A., “Nekotorye svoistva regulyarnogo resheniya uravneniya Gelmgoltsa v ploskoi oblasti”, Mat. zametki, 15:6 (1974), 885–890 | Zbl

[4] Ilin V. A., Moiseev E. I., “Ob odnom obobschenii formuly srednego znacheniya dlya regulyarnogo resheniya uravneniya Shredingera”, IPM AN SSSR, 1977, 157–166 | MR | Zbl

[5] Ilin V. A., Moiseev E. I., “Formula srednego znacheniya dlya prisoedinennykh funktsii operatora Laplasa”, Differents. uravneniya, 17:10 (1981), 1908–1910 | MR | Zbl

[6] Moiseev E. I., “Formula srednego dlya sobstvennykh funktsii ellipticheskogo samosopryazhennogo operatora vtorogo poryadka”, DAN SSSR, 197:3 (1971), 524–525 | MR | Zbl

[7] Moiseev E. I., “Asimptoticheskaya formula srednego znacheniya dlya regulyarnogo resheniya differentsialnogo uravneniya”, Differents. uravneniya, 16:5 (1980), 827–844 | MR | Zbl

[8] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[9] Ion F., Ploskie volny i sfericheskie srednie, Izd-vo inostr. lit., M., 1958

[10] Bitsadze A. V., Nakhushev A. M., “K teorii uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Differents. uravneniya, 10:12 (1974), 2184–2191 | Zbl

[11] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958 | Zbl

[12] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v 4 t., v. 1, Mir, M., 1986 | MR

[13] Ivanov L. A., Polovinkin I. P., “O nekotorykh svoistvakh operatora Beltrami v rimanovoi metrike”, Dokl. RAN, 365:3 (1999), 306–309 | MR

[14] Meshkov V. Z., Polovinkin I. P., “K svoistvam reshenii lineinykh uravnenii v chastnykh proizvodnykh”, Chernozemnyi almanakh nauchnykh issledovanii. Ser. Fundam. mat., 1(5) (2007), 3–11