@article{TSP_2011_28_28_a9,
author = {S. A. Nazarov},
title = {Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {266--299},
year = {2011},
volume = {28},
number = {28},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section JO - Trudy Seminara im. I.G. Petrovskogo PY - 2011 SP - 266 EP - 299 VL - 28 IS - 28 UR - http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/ LA - ru ID - TSP_2011_28_28_a9 ER -
%0 Journal Article %A S. A. Nazarov %T Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section %J Trudy Seminara im. I.G. Petrovskogo %D 2011 %P 266-299 %V 28 %N 28 %U http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/ %G ru %F TSP_2011_28_28_a9
S. A. Nazarov. Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 266-299. http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/
[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl
[3] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1. Zadacha v konuse”, Sib. mat. zhurn., 22:4 (1981), 142–163 | MR | Zbl
[4] Denk R., Volevich R. L., “A priory estimate for a singularly perturbed mixed order boundary-value problem”, Russ. J. Math. Phys., 7 (2000), 288–318 | MR | Zbl
[5] Denk R., Mannicken R., Volevich R. L., “Boundary-value problems for a class of elliptic operator pencils”, Integral Equations Operator Theory, 38 (2000), 410–436 | DOI | MR | Zbl
[6] Denk R., Volevich R. L., “Parameter-elliptic boundary-value problems connected with the Newton polygon”, Differential Integral Equations, 15 (2002), 289–326 | MR | Zbl
[7] Nazarov S. A., “Ob indekse kraevoi zadachi s malym parametrom pri starshikh proizvodnykh”, Differentsialnye uravneniya i ikh primeneniya, Vyp. 24, Izd-vo AN LitSSR, Vilnyus, 1979, 75–86
[8] Nazarov S. A., “Ob odnom klasse nekvaziellipticheskikh uravnenii v tsilindre”, Vestn. LGU. Ser. 1, 1:1 (1982), 125–127 | Zbl
[9] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl
[10] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16 (1963), 219–292
[11] Pazy A., “Asymptotic expansions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl
[12] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR
[13] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[14] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–160
[15] Nazarov S. A., “Regulyarnoe vyrozhdenie ellipticheskikh sistem s malym parametrom pri starshikh proizvodnykh”, Vestn. LGU. Ser. 1, 3:13 (1982), 106–108 | Zbl
[16] Nazarov S. A., Semenov B. N., “O svyazi koeffitsientov intensivnosti dlya ploskoi zadachi teorii uprugosti v klassicheskoi i momentnoi postanovke”, Issledovaniya po uprugosti i plastichnosti, 13 (1980), 148–154, Izd-vo LGU, L. | MR
[17] Nazarov S. A., Specovius-Neugebauer M., “Optimal results for the Brezzi–Pitkäranta approximation of viscous flow problems”, Differential Integral Equations, 17:11/12 (2005), 1359–1394 | MR
[18] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[19] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Mat. sb., 84:3 (1971), 607–629 | MR