Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 266-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2011_28_28_a9,
     author = {S. A. Nazarov},
     title = {Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {266--299},
     year = {2011},
     volume = {28},
     number = {28},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2011
SP  - 266
EP  - 299
VL  - 28
IS  - 28
UR  - http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/
LA  - ru
ID  - TSP_2011_28_28_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section
%J Trudy Seminara im. I.G. Petrovskogo
%D 2011
%P 266-299
%V 28
%N 28
%U http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/
%G ru
%F TSP_2011_28_28_a9
S. A. Nazarov. Non-quasielliptic boundary-value problems in a cylinder with regularly degenerate model problem on the cross-section. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 266-299. http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a9/

[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[3] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1. Zadacha v konuse”, Sib. mat. zhurn., 22:4 (1981), 142–163 | MR | Zbl

[4] Denk R., Volevich R. L., “A priory estimate for a singularly perturbed mixed order boundary-value problem”, Russ. J. Math. Phys., 7 (2000), 288–318 | MR | Zbl

[5] Denk R., Mannicken R., Volevich R. L., “Boundary-value problems for a class of elliptic operator pencils”, Integral Equations Operator Theory, 38 (2000), 410–436 | DOI | MR | Zbl

[6] Denk R., Volevich R. L., “Parameter-elliptic boundary-value problems connected with the Newton polygon”, Differential Integral Equations, 15 (2002), 289–326 | MR | Zbl

[7] Nazarov S. A., “Ob indekse kraevoi zadachi s malym parametrom pri starshikh proizvodnykh”, Differentsialnye uravneniya i ikh primeneniya, Vyp. 24, Izd-vo AN LitSSR, Vilnyus, 1979, 75–86

[8] Nazarov S. A., “Ob odnom klasse nekvaziellipticheskikh uravnenii v tsilindre”, Vestn. LGU. Ser. 1, 1:1 (1982), 125–127 | Zbl

[9] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl

[10] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16 (1963), 219–292

[11] Pazy A., “Asymptotic expansions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl

[12] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[13] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[14] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–160

[15] Nazarov S. A., “Regulyarnoe vyrozhdenie ellipticheskikh sistem s malym parametrom pri starshikh proizvodnykh”, Vestn. LGU. Ser. 1, 3:13 (1982), 106–108 | Zbl

[16] Nazarov S. A., Semenov B. N., “O svyazi koeffitsientov intensivnosti dlya ploskoi zadachi teorii uprugosti v klassicheskoi i momentnoi postanovke”, Issledovaniya po uprugosti i plastichnosti, 13 (1980), 148–154, Izd-vo LGU, L. | MR

[17] Nazarov S. A., Specovius-Neugebauer M., “Optimal results for the Brezzi–Pitkäranta approximation of viscous flow problems”, Differential Integral Equations, 17:11/12 (2005), 1359–1394 | MR

[18] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[19] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Mat. sb., 84:3 (1971), 607–629 | MR