Singular systems on the plane and in space
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 204-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2011_28_28_a7,
     author = {P. I. Kaleda},
     title = {Singular systems on the plane and in space},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {204--228},
     year = {2011},
     volume = {28},
     number = {28},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a7/}
}
TY  - JOUR
AU  - P. I. Kaleda
TI  - Singular systems on the plane and in space
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2011
SP  - 204
EP  - 228
VL  - 28
IS  - 28
UR  - http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a7/
LA  - ru
ID  - TSP_2011_28_28_a7
ER  - 
%0 Journal Article
%A P. I. Kaleda
%T Singular systems on the plane and in space
%J Trudy Seminara im. I.G. Petrovskogo
%D 2011
%P 204-228
%V 28
%N 28
%U http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a7/
%G ru
%F TSP_2011_28_28_a7
P. I. Kaleda. Singular systems on the plane and in space. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 204-228. http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a7/

[1] Anosova O., “On invariant manifolds in singularly perturbed systems”, J. Dynam. Control Systems, 5:4 (1999), 501–507 | DOI | MR | Zbl

[2] Anosova O. D., “Invariantnye mnogoobraziya v singulyarno vozmuschennykh sistemakh”, Differentsialnye uravneniya i dinamicheskie sistemy: Sb. statei, K 80-letiyu so dnya rozhdeniya akademika Evgeniya Frolovicha Mischenko, Tr. MIRAN im. V. A. Steklova, 236, 2002, 27–32 | MR | Zbl

[3] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy V, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 5, VINITI, M., 1986, 5–218 | MR

[4] Fenichel N., “Geometric singular perturbation theory for ordinary differential equation”, J. Different. Equations, 31 (1979), 53–98 | DOI | MR | Zbl

[5] Guckenheimer J., Ilyashenko Yu., “The Duck and the Devil: Canards on the staircase”, Moscow Math. J., 1:1 (2001), 27–47 | MR | Zbl

[6] Habbard J., “Parametrizing unstable and very unstable manifolds”, Moscow Math. J., 5:1 (2005), 105–124 | MR

[7] Krupa M., Szmolyan P., “Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions”, SIAM J. Math. Anal., 33:2 (2001), 286–314 | DOI | MR | Zbl

[8] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[9] Mischenko E. F., Kolesov Yu. S., Kolesov A.Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR