A nonlinear boundary-value problem for a degenerate parabolic pseudodifferential equation
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 182-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2011_28_28_a6,
     author = {Yu. V. Egorov and Nguyen Minh Chuong and Dang Anh Tuan},
     title = {A nonlinear boundary-value problem for a degenerate parabolic pseudodifferential equation},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {182--203},
     year = {2011},
     volume = {28},
     number = {28},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a6/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - Nguyen Minh Chuong
AU  - Dang Anh Tuan
TI  - A nonlinear boundary-value problem for a degenerate parabolic pseudodifferential equation
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2011
SP  - 182
EP  - 203
VL  - 28
IS  - 28
UR  - http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a6/
LA  - ru
ID  - TSP_2011_28_28_a6
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A Nguyen Minh Chuong
%A Dang Anh Tuan
%T A nonlinear boundary-value problem for a degenerate parabolic pseudodifferential equation
%J Trudy Seminara im. I.G. Petrovskogo
%D 2011
%P 182-203
%V 28
%N 28
%U http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a6/
%G ru
%F TSP_2011_28_28_a6
Yu. V. Egorov; Nguyen Minh Chuong; Dang Anh Tuan. A nonlinear boundary-value problem for a degenerate parabolic pseudodifferential equation. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 182-203. http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a6/

[1] Agmon S., Douglis L., Nirenberg N., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12 (1959), 632–727 | DOI | MR

[2] Agranovich M. S., “Singulyarnye integrodifferentsialnye operatory”, UMN, 20:5 (1965), 3–120 | MR | Zbl

[3] Agranovich M. S., Vishik M. I., “Ellipticheskie kraevye zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | Zbl

[4] Agranovich M. S., Vishik M. I., “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh uravnenii vysshikh poryadkov”, Mat. sb., 79:1 (1969), 3–36

[5] Egorov Yu. V., Nguen Min Chyong, “O polulineinykh ellipticheskikh kraevykh zadachakh dlya vyrozhdayuschikhsya psevdodifferentsialnykh uravnenii”, Dokl. RAN, 427:1 (2009), 10–13 | Zbl

[6] Egorov Yu. V., Nguen Min Chyong, Dang An Tuan, “Ob odnoi polulineinoi kraevoi zadache dlya vyrozhdayuschikhsya psevdodifferentsialnykh uravnenii”, Dokl. RAN, 427:2 (2009), 155–159 | Zbl

[7] Egorov Yu. V., Nguen Min Chyong, Dang An Tuan, “Polulineinye kraevye zadachi dlya vyrozhdayuschikhsya psevdodifferentsialnykh operatorov v prostranstvakh tipa Soboleva”, Russ. J. Math. Phys., 15:2 (2008), 222–237 | DOI | MR | Zbl

[8] Egorov Yu. V., Nguyen Minh Chuong, Dang Anh Tuan, “A semilinear non-classical pseudodifferential boundary value problem in the Sobolev type spaces”, C. R. Acad. Sci. Paris. Sér. 1, 337 (2003), 151–156 | MR

[9] Egorov Yu. V., Shubin M. A., Foundations of the classical theory of partial differential equations, Springer, Berlin, 1998 | MR | Zbl

[10] Rothe E., “Zur Theorie der topologischen Ortnung und der Vektorfelder in Banachschen Raumen”, Compositio Math., 5 (1937), 177–197 | MR