Homogenization of the diffusion equation with nonlinear flux condition on the interior boundary of a perforated domain – the influence of the scaling on the nonlinearity in the effective sink-source term
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 161-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2011_28_28_a5,
     author = {W. J\"ager and M. Neuss-Radu and T. A. Shaposhnikova},
     title = {Homogenization of the diffusion equation with nonlinear flux condition on the interior boundary of a perforated domain {\textendash} the influence of the scaling on the nonlinearity in the effective sink-source term},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {161--181},
     year = {2011},
     volume = {28},
     number = {28},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a5/}
}
TY  - JOUR
AU  - W. Jäger
AU  - M. Neuss-Radu
AU  - T. A. Shaposhnikova
TI  - Homogenization of the diffusion equation with nonlinear flux condition on the interior boundary of a perforated domain – the influence of the scaling on the nonlinearity in the effective sink-source term
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2011
SP  - 161
EP  - 181
VL  - 28
IS  - 28
UR  - http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a5/
LA  - ru
ID  - TSP_2011_28_28_a5
ER  - 
%0 Journal Article
%A W. Jäger
%A M. Neuss-Radu
%A T. A. Shaposhnikova
%T Homogenization of the diffusion equation with nonlinear flux condition on the interior boundary of a perforated domain – the influence of the scaling on the nonlinearity in the effective sink-source term
%J Trudy Seminara im. I.G. Petrovskogo
%D 2011
%P 161-181
%V 28
%N 28
%U http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a5/
%G ru
%F TSP_2011_28_28_a5
W. Jäger; M. Neuss-Radu; T. A. Shaposhnikova. Homogenization of the diffusion equation with nonlinear flux condition on the interior boundary of a perforated domain – the influence of the scaling on the nonlinearity in the effective sink-source term. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 161-181. http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a5/

[1] Belyaev A. G., Pyatnitskii A. L., Chechkin G. A., “Usrednenie v perforirovannoi oblasti s ostsilliruyuschim tretim kraevym usloviem”, Mat. sb., 193:7 (2001), 3–20 | DOI | MR

[2] Berlyand L. V., Goncharenko M. V., “The averaging of the diffusion equation in a porous medium with weak absorption”, J. Soviet Math., 52:5 (1990), 3428–3435 | DOI | MR

[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[4] Goncharenko M., “The asymptotic behaviour of the third boundary-value problem solutions in domains with fine-grained boundaries”, GAKUTO Int. Ser. Math. Sci. Appl. Homogenization and Applications to Material Sciences, 9 (1997), 203–213 | MR

[5] Eger V., Oleinik O. A., Shamaev A. S., “Ob usrednenii reshenii kraevoi zadachi dlya uravneniya Laplasa v chastichno perforirovannoi oblasti s kraevym usloviem tretego roda na granitse polostei”, Tr. MMO, 58 (1997), 187–223 | MR

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[7] Mel'nik T. A., Sivak O. A., “Asymptotic analysis of a boundary-value problem with the nonlinear boundary multiphase interactions in a perforated domain”, Ukr. Math. J., 61 (2009), 494–512 | MR

[8] Melnik T. A., Sivak O. A., “Asimptoticheskii analiz parabolicheskoi polulineinoi zadachi s nelineinymi granichnymi mnogofazovymi vzaimodeistviyami v perforirovannoi oblasti”, Problemy mat. analiza, 2009, no. 43, 107–128

[9] Oleinik O. A., Shaposhnikova T. A., “O zadache usredneniya v chastichno perforirovannoi oblasti s granichnym usloviem smeshannogo tipa na granitse polostei, soderzhaschim malyi parametr”, Differents. uravneniya, 31:7 (1995), 1140–1150 | MR

[10] Oleinik O.A., Shaposhnikova T. A., “On homogenization problem for the Laplace operator in partially perforated domains with Neumann conditions on the boundary of cavities”, Rend. Mat. Acc. Lincei. S. 9, 6 (1995), 133–142 | MR | Zbl

[11] Oleinik O. A., Shaposhnikova T. A., “On the homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary”, Rend. Mat. Acc. Lincei. S. 9, 7 (1996), 129–146 | MR | Zbl

[12] Piatnitski A. L., Chiado Piat V., “Gamma-convergence approach to variational problems in perforated domains with Fourier boundary conditions”, ESAIM: COCV, 2008, 1292–8119

[13] Zubova M. N., Shaposhnikova T. A., “Ob usrednenii kraevykh zadach v perforirovannykh oblastyakh s tretim granichnym usloviem i ob izmenenii kharaktera nelineinosti zadachi v rezultate usredneniya”, Differents. uravneniya, 47:1 (2011), 79–91 | MR | Zbl

[14] Yosifian G. A., “On homogenization problems in perforated domains with nonlinear boundary conditions”, Appl. Anal., 65 (1997), 257–288 | DOI | MR | Zbl

[15] Yosifian G. A., “Some homogenization problems for the system of elasticity with nonlinear boundary conditions in perforated domains”, Appl. Anal., 71 (1999), 379–411 | DOI | MR | Zbl

[16] Yosifian G. A., “Homogenization of some contact problems for the system of elasticity in perforated domains”, Rend. Sem. Mat. Univ. Padova, 105 (2001), 37–64 | MR | Zbl