Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 8-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2011_28_28_a1,
     author = {Yu. A. Alkhutov and V. V. Zhikov},
     title = {H\"older continuity of solutions of parabolic equations with variable nonlinearity exponent},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {8--74},
     year = {2011},
     volume = {28},
     number = {28},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a1/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - V. V. Zhikov
TI  - Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2011
SP  - 8
EP  - 74
VL  - 28
IS  - 28
UR  - http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a1/
LA  - ru
ID  - TSP_2011_28_28_a1
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A V. V. Zhikov
%T Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent
%J Trudy Seminara im. I.G. Petrovskogo
%D 2011
%P 8-74
%V 28
%N 28
%U http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a1/
%G ru
%F TSP_2011_28_28_a1
Yu. A. Alkhutov; V. V. Zhikov. Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 28 (2011) no. 28, pp. 8-74. http://geodesic.mathdoc.fr/item/TSP_2011_28_28_a1/

[1] Zhikov V. V., “On Lavrentiev's Phenomenon”, Russ. J. Math. Phys., 3:2 (1994), 249–269 | MR

[2] Zhikov V. V., “On some variational problems”, Russ. J. Math. Phys., 5:1 (1996), 105–116 | MR

[3] Fan X., A Class of De Giorgi Type and Holder Continuity of Minimizers of Variational with $m(x)$-Growth Condition, Lanzhou Univ., China, 1995

[4] Alkhutov Yu. A., “Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Differents. uravneniya, 33:12 (1997), 1651–1660 | MR | Zbl

[5] Krasheninnikova O. V., “O nepreryvnosti v tochke reshenii ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Tr. MIRAN im. V. A. Steklova, 236, 2002, 204–211 | MR | Zbl

[6] Acerbi E., Mingione G., “Regularity results for a class of functionals with non-standard growth”, Arch. Rational Mech. Anal., 156 (2001), 121–140 | DOI | MR | Zbl

[7] Alkhutov Yu. A., Krasheninnikova O. V., “Nepreryvnost v granichnykh tochkakh reshenii kvazilineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Izv. RAN. Ser. mat., 68:6 (2004), 3–60 | DOI | MR | Zbl

[8] R.{uz̆hic̆ka M.}, Electrorheological Fluids: Modeling and Mathematical Theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR | Zbl

[9] DiBenedetto E., Degenerate Parabolic Equations, Springer, New York, 1993 | MR

[10] DiBenedetto E., Urbano M. J., Vespri V., Current Issues on Singular and Degenerate Evolution Equations, Prepr. N 03 24, Pré-Publicações do Departamento de Matemática Universidade de Coimbra, 2003

[11] Antontsev S. N., Zhikov V. V., “Hihger integrability for parabolic equations of $p(x,t)$-Laplacian type”, Advances in Differential Equations, 10:9 (2005), 1053–1080 | MR | Zbl

[12] Acerbi E., Mingione G., Seregin G. A., “Regularity results for parabolic systems related to a class of non-Newtonian fluids”, Ann. Inst. Henri Poincaré, Anal. Non Linéare, 21:1 (2004), 25–60 | MR | Zbl

[13] Alkhutov Yu. A., Antontsev S. N., Zhikov V. V., “Parabolicheskie uravneniya s peremennym poryadkom nelineinosti”, Zbirnik prats Institutu matematiki NAN Ukraïni, 6:1 (2009), 23–50

[14] DeGiorgi E., “Sulla differenziabilitá e l'analicitá delle estremali degli integrali multipli regolari”, Mem. Acc. Sci. Torino, Cl. Sc. Fis. Mat. Nat., 3:3 (1957), 25–43 | MR

[15] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | Zbl