Newton's polygon method and the local solvability of free boundary problems
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 26 (2007) no. 26, pp. 116-178
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2007_26_26_a6,
     author = {B. Grec and E. V. Radkevich},
     title = {Newton's polygon method and the local solvability of free boundary problems},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {116--178},
     year = {2007},
     volume = {26},
     number = {26},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a6/}
}
TY  - JOUR
AU  - B. Grec
AU  - E. V. Radkevich
TI  - Newton's polygon method and the local solvability of free boundary problems
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2007
SP  - 116
EP  - 178
VL  - 26
IS  - 26
UR  - http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a6/
LA  - ru
ID  - TSP_2007_26_26_a6
ER  - 
%0 Journal Article
%A B. Grec
%A E. V. Radkevich
%T Newton's polygon method and the local solvability of free boundary problems
%J Trudy Seminara im. I.G. Petrovskogo
%D 2007
%P 116-178
%V 26
%N 26
%U http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a6/
%G ru
%F TSP_2007_26_26_a6
B. Grec; E. V. Radkevich. Newton's polygon method and the local solvability of free boundary problems. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 26 (2007) no. 26, pp. 116-178. http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a6/

[30] Adams R. A., Sobolev Spaces, Acad. Press, New York, 1975 | MR | Zbl

[31] Antonsev S. C., Gonsalves C. R., Meirmanov A. M., “Local existence of classical solutions to the well-posed Hele–Shaw problem”, Port. Math., 59, fasc. 4 (2002), 435–452 | MR

[32] Bailly J., “Local existence of classical solutions to first-order parabolic equations describing free boundaries”, Nonlinear Anal., 32:5 (1996), 583–599 | DOI | MR

[33] Brailovsky I., Babchin A., Frankel M., Sivashinsky G., “Fingering instability in water-oil displacement” (to appear)

[34] Barenblatt G. I., Entov V. M., Ryzhik V. M., Theory of Unsteady Filtration of Liquids and Gases, Nedra, Moscow, 1984

[35] Cahn J. W., Hillard J. E., “Free energy of a nonuniform system. Pt I: Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–267 | DOI

[36] Dreyer W., Müller W. H., “A study of the coarseing in tin/lead solders”, Intern. J. Solids Structures, 37 (2000), 3841–3871 | DOI | Zbl

[37] Denk R., Volevich L. R., “A new class of parabolic problems connected with Newton polygon” (to appear)

[38] Dreyer W., Wagner B., Sharp-interface model for eutectic alloys. Pt. I: Concentration dependent surface tension, Weierstrass-Institute fur Angewandte Analysis und Stochastik, 2003, Preprint N ISSN 0946-8633 | MR

[39] Escher J., Prüss J., Simonett G., “Analytic solutions for a Stefan problem with Gibbs–Thomson correction”, J. Reine Angew. Math., 563 (2003), 1–52 | DOI | MR | Zbl

[40] Golovkin K. K., Solonnikov V. A., “On an estimate of the convolution operators”, Zap. Naych. Sem. LOMI, 1988, 6–86 | MR | Zbl

[41] Gindikin S. G., Volevich L. R., The method of Newton polyhedron in the theory of partial differential equations, Math. Appl. (Soviet Ser.), 86, Kluwer Academic, 1992 | MR | Zbl

[42] Hanzawa E.-I., “Classical solution of the Stefan problem”, Tohoku Math. J., 2:33 (1981), 297–335 | DOI | MR | Zbl

[43] Heuser H., Lehrbuch der Analysis, v. 2, B. G. Teubner, Stuttgart, 1981 | MR | Zbl

[44] Lizorkin P. I., “Generalized Liouville differentiation and functional spaces $L^{(r)}_p$”, Mat. Sb., 60:3 (1965), 325–353 | MR

[45] Nikol'skii S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer, New York, 1975 | MR

[46] Nirenberg L., Topics on Nonlinear Functional Analysis, v. VIII, Courant Inst. Math. Sci., New York, 1974, 299 pp. | MR | Zbl

[47] Radkevich E. V. The Gibbs–Thomson effect and existence conditions of classical solution for the modified Stefan problem // Free Bound. Problem Involving Solids. Longman Scientific and Technical, 1992. P. 135–142., Pitman Research Notes in Math. Series, 281 | MR

[48] Solonnikov V. A., “Estimates of the solution of some non-coercitive initial boundary value problems using theorems on multipliers in Fourier–Laplace integrals”, Zap. Naych. Sem. LOMI, 1987, 220–227

[49] Visintin V., Models of Phase Transitions, Birkhäuser, Boston, 1996 | MR | Zbl

[50] Volevich L. R., “Newton polygon and general parameter-elliptic (parabolic) systems”, Russ. J. Math. Phys., 8 (2001), 375–400 | MR | Zbl

[51] Volevich L. R., “Solvability of the boundary problems for general elliptic system”, Mat. Sb., 68:3 (1965), 373–416 | MR | Zbl

[52] Vidorovich V. N., Volpian A. E., Kurdiumov G. M., Crystallization direction and physico-chemical analysis, Khimia, M., 1976, 200 pp.

[53] Watson S. J., Otto F., Rubinstein B. Y., Davis S. H., “Coarsening dynamics for the convective Cahn–Hilliard equation” (to appear)

[54] Radkevich E., Zakharchenko M., “O singulyarno-predelnoi zadache rasshirennoi modeli Kana–Khillarda”, Tr. seminara im. I. G. Petrovskogo, 23 (2003), 309–337 | MR | Zbl

[55] Frolova E. V., “Estimates for solutions to model problems connected with quasistationary approximation for the Stefan problem”, J. Math. Sci., 124:3 (2004), 5054–5069 | DOI | MR

[56] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[57] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[58] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR