Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 26 (2007) no. 26, pp. 92-115
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2007_26_26_a5,
     author = {Yu. A. Goritsky},
     title = {Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {92--115},
     year = {2007},
     volume = {26},
     number = {26},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a5/}
}
TY  - JOUR
AU  - Yu. A. Goritsky
TI  - Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2007
SP  - 92
EP  - 115
VL  - 26
IS  - 26
UR  - http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a5/
LA  - ru
ID  - TSP_2007_26_26_a5
ER  - 
%0 Journal Article
%A Yu. A. Goritsky
%T Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation
%J Trudy Seminara im. I.G. Petrovskogo
%D 2007
%P 92-115
%V 26
%N 26
%U http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a5/
%G ru
%F TSP_2007_26_26_a5
Yu. A. Goritsky. Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 26 (2007) no. 26, pp. 92-115. http://geodesic.mathdoc.fr/item/TSP_2007_26_26_a5/

[1] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1977 | MR

[2] Hale J. K., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, 1988 | MR

[3] Haraux A., Systèmes dinamiques dissipatifs et applications, Masson, Paris, 1991 | MR | Zbl

[4] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1988 ; 2nd ed., 1997 | DOI | MR | Zbl | DOI

[5] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[6] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, 2002 | MR | Zbl

[7] Constantine P., Foias C., Nicolaenko B., Temam R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Appl. Math. Sci., 70, Springer, New York, 1989 | DOI | MR

[8] Chueshov I. D., Vvedenie v teoriyu beskonechnomernykh dinamicheskikh sistem, Akta, Kharkov, 1999 | MR | Zbl

[9] Foias C., Sell G. R., Temam R., “Inertial manifolds for nonlinear evolutionary equations”, J. Different. Equations, 73:2 (1988), 309–353 | DOI | MR | Zbl

[10] Foias C., Manley O., Temam R., “Modeling of the interaction of small and large eddies in two dimensional turbulent flows”, Math. Mod. Num. Anal., 22 (1988), 93–114 | MR

[11] Foias C., Sell G. R., Titi E. S., “Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations”, J. Dynam. Different. Equations, 1 (1989), 199–244 | DOI | MR | Zbl

[12] Mora X., “Finite-dimensional attracting invariant manifolds for damped semilinear wave equations”, Res. Notes Math., 155 (1987), 172–183 | MR | Zbl

[13] Mora X., Sol\'{a-Morales J.}, “Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations”, Dynamics of Infinite Dimensional Systems, Springer, New York, 1987, 187–210 | DOI | MR

[14] Mallet-Paret J., Sell G. R., “Inertial manifolds for reaction-diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 4:4 (1988), 805–866 | DOI | MR

[15] Miklav\v {cič M.}, “A sharp condition for existence of an inertial manifolds”, J. Dynam. Different. Equations, 3:3 (1991), 437–456 | DOI | MR | Zbl

[16] Romanov A. V., “Tochnye otsenki razmernosti integralnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. AN. Ser. mat., 57:4 (1993), 36–54 | MR | Zbl

[17] Vishik M. I., Fidler B., “Kolichestvennoe usrednenie globalnykh attraktorov giperbolicheskikh volnovykh uravnenii s bystro ostsilliruyuschimi koeffitsientami”, UMN, 57:4 (2002), 75–94 | DOI | MR | Zbl

[18] Vishik M. I., Chepyzhov V. V., “Approksimatsiya traektorii, lezhaschikh na globalnom attraktore giperbolicheskogo uravneniya s bystro ostsilliruyuschei po vremeni vneshnei siloi”, Mat. sb., 194:9 (2003), 3–30 | DOI | MR | Zbl

[19] Chepyzhov V. V., Vishik M. I., Wendland W. L., “On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging”, Discrete Contin. Dynam. Systems, 12:1 (2005), 27–38 | MR | Zbl

[20] Qian M., Qin W.-X., Wang G.-X., Zhu S., “Unbounded one-dimensional global attractor for the damped sine-Gordon equation”, J. Nonlinear Sci., 10:4 (2000), 417–432 | DOI | MR | Zbl

[21] Chepyzhov V. V., Goritsky A. Yu., “Global integral manifolds with exponential tracking for nonautonomous equations”, Russ. J. Math. Phys., 5:1 (1997), 9–28 | MR | Zbl

[22] Chepyzhov V. V., Goritsky A. Yu., “Explicit construction of integral manifolds with exponential tracking”, Appl. Anal., 71:1–4 (1999), 237–252 | MR | Zbl

[23] Goritskii A. Yu., Chepyzhov V. V., “Svoistvo dikhotomii reshenii kvazilineinykh uravnenii v zadachakh ob inertsialnykh mnogoobraziyakh”, Mat. sb., 196:4 (2005), 23–50 | DOI | MR

[24] Chepyzhov V. V., Goritsky A. Yu., Vishik M. I., “Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation”, Russ. J. Math. Phys., 12:1 (2005), 17–39 | MR | Zbl

[25] Chepyzhov V. V., Goritsky, A. Yu., “Integral manifolds for the sine-Gordon equation and their averaging”, Proc. of the Conference on Homogenization (Narvik. June 2004) (to appear)

[26] Hirsh M., Differential Topology, Springer, New York, 1976 | MR