@article{TSP_2006_25_25_a9,
author = {I. A. Rudakov},
title = {Nonlinear equations satisfying the nonresonance condition},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {226--248},
year = {2006},
volume = {25},
number = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a9/}
}
I. A. Rudakov. Nonlinear equations satisfying the nonresonance condition. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 226-248. http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a9/
[1] Brezis H., Nirenberg L., “Characterizations of the ranges of some nonlinear operators and applications to boundary value problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5:2 (1978), 225–325 | MR
[2] Brezis H., Nirenberg L., “Forced vibration for a nonlinear wave equations”, Comm. Pure Appl. Math., 31:1 (1978), 1–30 | DOI | MR | Zbl
[3] Rudakov I. A., “Nelineinye kolebaniya struny”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1984, no. 2, 9–13 | MR | Zbl
[4] Brezis H., “Periodic solutions of nonlinear vibrating string and duality principles”, Bull. Amer. Math. Soc., 8:3 (1983), 409–426 | DOI | MR | Zbl
[5] Coron J. M., “Periodic solutions of a nonlinear wave equations without assumption of monotonicity”, Math. Ann., 262:2 (1983), 273–285 | DOI | MR | Zbl
[6] Rabinowitz P., “Free vibration for a semilinear wave equation”, Comm. Pure Appl. Math., 33:3 (1980), 667–689 | MR
[7] Tanaka K., “Infinitely many periodic solutions for the equations: $u_{tt}\-u_{xx}\pm|u|^{s-1}=f(x,t)$”, Comm. Part. Different. Equations, 10:11 (1995) | MR
[8] Plotnikov P. I., “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Mat. sb., 136(178):4(8) (1988), 546–560 | MR
[9] Feireisl E., “On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term”, Czechoslovak Math. J., 38:1 (1988), 78–87 | MR | Zbl
[10] Lovicarova H. Periodic solutions of a weakly nonlinear wave equations in one dimension, Czechoslovak Math. J., 19(94) (1969), 324–342 | MR | Zbl
[11] Rudakov I. A. Zadacha o svobodnykh periodicheskikh kolebaniyakh struny s nemonotonnoi nelineinostyu, UMN, 40:1(241) (1985), 215–216 | MR | Zbl
[12] Barby V., Pavel N. H., “Periodic solutions to nonlinear one dimensional wave equation with $x$-dependent coefficients”, Trans. Amer. Math. Soc., 349:5 (1997), 2035–2048 | DOI | MR
[13] Rudakov I. A., “Periodicheskoe po vremeni reshenie nelineinogo volnovogo uravneniya s nepostoyannymi koeffitsientami”, Fundament. i prikl. mat., 8:3 (2002), 877–886 | MR | Zbl
[14] Rudakov I. A., “Periodicheskie resheniya nelineinogo volnovogo uravneniya s nepostoyannymi koeffitsientami”, Mat. zametki., 76:3 (2004), 427–438 | DOI | MR | Zbl
[15] Babich V. M., Grigoreva R. S., Ortogonalnye razlozheniya i metod Fure, Izd-vo Leningr. un-ta, L., 1983 | MR | Zbl
[16] Kufner A., Fuchik C., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR
[17] Rabinowitz P., “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982) | DOI | MR