@article{TSP_2006_25_25_a6,
author = {O. I. Morozov},
title = {Contact-equivalence problem for linear hyperbolic equations},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {119--142},
year = {2006},
volume = {25},
number = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a6/}
}
O. I. Morozov. Contact-equivalence problem for linear hyperbolic equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 119-142. http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a6/
[1] Cartan É., “Sur la structure des groupes infinis de transformations”, ØE uvres Complètes, Pt. II, v. 2, Gauthier-Villars, Paris, 1953, 571–714
[2] Cartan É., “Les sous-groupes des groupes continus de transformations”, ØE uvres Complètes, Pt. II, v. 2, Gauthier-Villars, Paris, 1953, 719–856
[3] Cartan É. Les groupes de transformations continus, infinis, simples, ØE uvres Complètes, Pt. II, v. 2, Gauthier-Villars, Paris, 1953, 857–925
[4] Cartan É. La structure des groupes infinis, ØE uvres Complètes, Pt. II, v. 2, Gauthier-Villars, Paris, 1953, 1335–1384 | MR
[5] Cartan É. Les problèmes d'équivalence, ØE uvres Complètes, Pt. II, v. 2, Gauthier-Villars, Paris, 1953, 1311–1334 | MR
[6] Fels M., Olver P. J., “Moving coframes. I. A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[7] Fels M., Olver P. J., “Moving coframes. II. Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[8] Gardner R. B., The Method of Equivalence and Its Applications, SIAM, Philadelphia, 1989 | MR
[9] Ibragimov N. H., “Infinitesimal method in the theory of invariants of algebraic and differential equations”, Notices South African Math. Soc., 29 (1997), 61–70
[10] Ibragimov N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley and Sons, N. Y., 1999 | MR
[11] Ibragimov N. H., “Laplace type invariants for parabolic equations”, Nonlinear Dynam., 28 (2002), 125–133 | DOI | MR | Zbl
[12] Ibragimov N. Kh., “Invarianty giperbolicheskikh uravnenii: reshenie problemy Laplasa”, PMTF, 45:2 (2004), 11–21 | MR | Zbl
[13] Johnpillai I. K., Mahomed F. M., “Singular invariant equation for the $(1+1)$ Fokker–Planck equation”, J. Phys. A., 34 (2001), 11033–11051 | DOI | MR | Zbl
[14] Johnpillai I. K., Mahomed F. M., Wafo Soh C., “Basis of joint invariants for $(1+1)$ linear hyperbolic equations”, J. Nonlinear Math. Phys., 9, Suppl. 2 (2002), 49–59 | DOI | MR
[15] Laplace P. S., “Recherches sur le calcul intégral aux différences partielles”, Mémoires de l'Académie Royale de Sciences de Paris, 1773–1777, 341–401; ØE uvres Complètes V. IX. Paris, Gauthier-Villars, 1893, 3–68, English translation: N. Y., 1966
[16] Lie S., Gesammelte Abhandlungen, B. 1–6, BG Teubner, Leipzig, 1922–1937 | Zbl
[17] Lisle I. G., Reid G. J., “Geometry and structure of Lie pseudogroups from infinitesimal defining equations”, J. Symbolic Comput., 26 (1998), 355–379 | DOI | MR | Zbl
[18] Lisle I. G., Reid G. J., Symmetry Classification Using Invariant Moving Frame, 1999 http://www.apmaths.uwo.ca/<nobr>$\sim$</nobr>reid
[19] Morozov O. I., “Moving Coframes and Symmetries of Differential Equations”, J. Phys. A., 35 (2002), 2965–2977 | DOI | MR | Zbl
[20] Morozov O. I., “Contact Equivalence Problem for Linear Parabolic Equations”, 2003, arXiv: math-ph/0304045 | MR
[21] Morozov O. I., “Symmetries of differential equations and Cartan's equivalence method”, Proc. Fifth Int. Conf. “Symmetry in Nonlinear Mathematical Physics”, Part 1, Kyiv, 2004, 196–203 | MR | Zbl
[22] Ovsyannikov L. V., “Gruppovye svoistva uravneniya Chaplygina”, PMTF, 1960, no. 3, 126–145
[23] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[24] Olver P. J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 | MR | Zbl