Homogenization of the Neumann problem for the Lam\'e equations of linear elasticity in domains with a periodic system of channels of small length
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 310-322

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TSP_2006_25_25_a12,
     author = {V. V. Yablokov},
     title = {Homogenization of the {Neumann} problem for the {Lam\'e} equations of linear elasticity in domains with a periodic system of channels of small length},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {310--322},
     publisher = {mathdoc},
     volume = {25},
     number = {25},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/}
}
TY  - JOUR
AU  - V. V. Yablokov
TI  - Homogenization of the Neumann problem for the Lam\'e equations of linear elasticity in domains with a periodic system of channels of small length
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2006
SP  - 310
EP  - 322
VL  - 25
IS  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/
LA  - ru
ID  - TSP_2006_25_25_a12
ER  - 
%0 Journal Article
%A V. V. Yablokov
%T Homogenization of the Neumann problem for the Lam\'e equations of linear elasticity in domains with a periodic system of channels of small length
%J Trudy Seminara im. I.G. Petrovskogo
%D 2006
%P 310-322
%V 25
%N 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/
%G ru
%F TSP_2006_25_25_a12
V. V. Yablokov. Homogenization of the Neumann problem for the Lam\'e equations of linear elasticity in domains with a periodic system of channels of small length. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 310-322. http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/