Homogenization of the Neumann problem for the Lamé equations of linear elasticity in domains with a periodic system of channels of small length
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 310-322
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TSP_2006_25_25_a12,
author = {V. V. Yablokov},
title = {Homogenization of the {Neumann} problem for the {Lam\'e} equations of linear elasticity in domains with a periodic system of channels of small length},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {310--322},
year = {2006},
volume = {25},
number = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/}
}
TY - JOUR AU - V. V. Yablokov TI - Homogenization of the Neumann problem for the Lamé equations of linear elasticity in domains with a periodic system of channels of small length JO - Trudy Seminara im. I.G. Petrovskogo PY - 2006 SP - 310 EP - 322 VL - 25 IS - 25 UR - http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/ LA - ru ID - TSP_2006_25_25_a12 ER -
%0 Journal Article %A V. V. Yablokov %T Homogenization of the Neumann problem for the Lamé equations of linear elasticity in domains with a periodic system of channels of small length %J Trudy Seminara im. I.G. Petrovskogo %D 2006 %P 310-322 %V 25 %N 25 %U http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/ %G ru %F TSP_2006_25_25_a12
V. V. Yablokov. Homogenization of the Neumann problem for the Lamé equations of linear elasticity in domains with a periodic system of channels of small length. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 310-322. http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a12/
[1] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Nauk. dumka, Kiev, 1974 | MR