@article{TSP_2006_25_25_a1,
author = {I. V. Astashova},
title = {Uniform estimates for positive solutions to quasi-linear differential equations of even order},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {21--34},
year = {2006},
volume = {25},
number = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a1/}
}
TY - JOUR AU - I. V. Astashova TI - Uniform estimates for positive solutions to quasi-linear differential equations of even order JO - Trudy Seminara im. I.G. Petrovskogo PY - 2006 SP - 21 EP - 34 VL - 25 IS - 25 UR - http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a1/ LA - ru ID - TSP_2006_25_25_a1 ER -
I. V. Astashova. Uniform estimates for positive solutions to quasi-linear differential equations of even order. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 25 (2006) no. 25, pp. 21-34. http://geodesic.mathdoc.fr/item/TSP_2006_25_25_a1/
[1] Kondratev V. A., “O kachestvennykh svoistvakh reshenii polulineinykh ellipticheskikh uravnenii”, Tr. seminara im. I. G. Petrovskogo, 16 (1991), 186–190
[2] Astashova I. V., “O kachestvennykh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, UMN, 51:5 (1996), 185 | DOI
[3] Astashova I. V., “Estimates of solutions to one-dimensional Schrödinger equation”, Progress in Analysis, Proc. of the 3rd Intern. ISAAC Congr., v. 2, World Scientific, Singapore, 2003, 955–960 | DOI | MR
[4] Levin A. Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+\ldots+p_n(t)x=0$”, UMN, 24:2(146) (1969), 43–96 | MR
[5] De la Vallée-Poussin Ch. I, “Sur l'équation différentielle linéaire du second ordre. Détermination d'une intégrale par deux valeurs assignées. Extension aux équations d'ordre $n$”, J. Math. Pures et Appl., 9:8 (1929), 125–144 | Zbl
[6] Pólya G., “On the mean-value theorem corresponding to a given linear homogeneous differential equation”, Trans. Amer. Math. Soc., 24 (1924), 312–324 | DOI | MR | Zbl