Keywords: Grassmann manifold, spaces of parameters.
@article{TRSPY_2024_326_a9,
author = {Vladimir Ivanovi\'c and Svjetlana Terzi\'c},
title = {$\mathbb Z_2${-Homology} of the {Orbit} {Spaces} $G_{n,2}/T^n$},
journal = {Informatics and Automation},
pages = {240--274},
year = {2024},
volume = {326},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a9/}
}
Vladimir Ivanović; Svjetlana Terzić. $\mathbb Z_2$-Homology of the Orbit Spaces $G_{n,2}/T^n$. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 240-274. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a9/
[1] Ayzenberg A., Masuda M., “Orbit spaces of equivariantly formal torus actions of complexity one”, Transform. Groups, 2023 | DOI | Zbl
[2] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl
[3] Buchstaber V.M., Terzić S., “Toric topology of the complex Grassmann manifolds”, Moscow Math. J., 19:3 (2019), 397–463 | DOI | MR | Zbl
[4] V. M. Buchstaber and S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | DOI | MR | Zbl
[5] V. M. Buchstaber and S. Terzić, “Resolution of singularities of the orbit spaces $G_{n,2}/T^n$”, Proc. Steklov Inst. Math., 317 (2022), 21–54 | DOI | DOI | MR | Zbl
[6] V. M. Buchstaber and S. Terzić, “The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\mathbb C^*)^n$ of the Grassmann manifolds $G_{n,2}$”, Sb. Math., 214:12 (2023), 1694–1720 | DOI | DOI | MR | Zbl
[7] Buchstaber V.M., Terzić S., Moduli space of weighted pointed stable curves and toric topology of Grassmann manifolds, E-print, 2024, arXiv: 2410.01059 [math.AG] | DOI
[8] Ceyhan Ö., “Chow groups of the moduli spaces of weighted pointed stable curves of genus zero”, Adv. Math., 221:6 (2009), 1964–1978 | DOI | MR | Zbl
[9] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | MR | Zbl | Zbl
[10] Goresky M., MacPherson R., “On the topology of algebraic torus actions”, Algebraic groups (Utrecht 1986: Proc. symp. in honour of T. A. Springer), Lect. Notes Math., 1271, Springer, Berlin, 1987, 73–90 | DOI | MR
[11] Hassett B., “Moduli spaces of weighted pointed stable curves”, Adv. Math., 173:2 (2003), 316–352 | DOI | MR | Zbl
[12] Kapranov M.M., “Chow quotients of Grassmannians. I”, I.M. Gelfand seminar, Part 2, Adv. Sov. Math., 16, Am. Math. Soc., Providence, RI, 1993, 29–110 | MR | Zbl
[13] Karshon Y., Tolman S., “Topology of complexity one quotients”, Pac. J. Math., 308:2 (2020), 333–346 | DOI | MR | Zbl
[14] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Am. Math. Soc., 330:2 (1992), 545–574 | DOI | MR | Zbl
[15] Losev A., Manin Yu., “New moduli spaces of pointed curves and pencils of flat connections”, Mich. Math. J., 48:1 (2000), 443–472 | DOI | MR | Zbl
[16] Manin Yu., “Moduli stacks $\overline {L}_{g,S}$”, Moscow Math. J., 4:1 (2004), 181–198 | DOI | MR | Zbl
[17] Süß H., “Toric topology of the Grassmannian of planes in $\mathbb {C}^5$ and the del Pezzo surface of degree 5”, Moscow Math. J., 21:3 (2021), 639–652 | DOI | MR | Zbl
[18] Tavakol M., “The Chow ring of the moduli space of curves of genus zero”, J. Pure Appl. Algebra, 221:4 (2017), 757–772 | DOI | MR | Zbl
[19] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl