$\mathbb Z_2$-Homology of the Orbit Spaces $G_{n,2}/T^n$
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 240-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the $\mathbb Z_2$-homology groups of the orbit space $X_n = G_{n,2}/T^n$ for the canonical action of the compact torus $T^n$ on a complex Grassmann manifold $G_{n,2}$. Our starting point is the model $(U_n,p_n)$ for $X_n$ constructed by Buchstaber and Terzić (2022), where $U_n = \Delta _{n,2}\times \mathcal F_n$ for a hypersimplex $\Delta _{n,2}$ and a universal space of parameters $\mathcal F_n$ defined in the works of Buchstaber and Terzić (2019, 2022). It was proved by Buchstaber and Terzić (2023) that $\mathcal F_n$ is diffeomorphic to the moduli space $\mathcal M_{0,n}$ of stable $n$-pointed genus zero curves. We exploit the results of Keel (1992) and Ceyhan (2009) on the homology groups of $\mathcal M_{0,n}$ and express them in terms of the stratification of $\mathcal F_n$ incorporated in the model $(U_n,p_n)$. As a result we provide an inductive, with respect to $n$, description of cycles in $X_n$. We also obtain explicit formulas for the $\mathbb Z_2$-homology groups of $X_5$ and $X_6$. The results for $X_5$ recover by a different method the results of Buchstaber and Terzić (2023) and Süss (2020). The results for $X_6$ seem to be new.
Mots-clés : torus action
Keywords: Grassmann manifold, spaces of parameters.
@article{TRSPY_2024_326_a9,
     author = {Vladimir Ivanovi\'c and Svjetlana Terzi\'c},
     title = {$\mathbb Z_2${-Homology} of the {Orbit} {Spaces} $G_{n,2}/T^n$},
     journal = {Informatics and Automation},
     pages = {240--274},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a9/}
}
TY  - JOUR
AU  - Vladimir Ivanović
AU  - Svjetlana Terzić
TI  - $\mathbb Z_2$-Homology of the Orbit Spaces $G_{n,2}/T^n$
JO  - Informatics and Automation
PY  - 2024
SP  - 240
EP  - 274
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a9/
LA  - ru
ID  - TRSPY_2024_326_a9
ER  - 
%0 Journal Article
%A Vladimir Ivanović
%A Svjetlana Terzić
%T $\mathbb Z_2$-Homology of the Orbit Spaces $G_{n,2}/T^n$
%J Informatics and Automation
%D 2024
%P 240-274
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a9/
%G ru
%F TRSPY_2024_326_a9
Vladimir Ivanović; Svjetlana Terzić. $\mathbb Z_2$-Homology of the Orbit Spaces $G_{n,2}/T^n$. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 240-274. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a9/

[1] Ayzenberg A., Masuda M., “Orbit spaces of equivariantly formal torus actions of complexity one”, Transform. Groups, 2023 | DOI | Zbl

[2] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl

[3] Buchstaber V.M., Terzić S., “Toric topology of the complex Grassmann manifolds”, Moscow Math. J., 19:3 (2019), 397–463 | DOI | MR | Zbl

[4] V. M. Buchstaber and S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | DOI | MR | Zbl

[5] V. M. Buchstaber and S. Terzić, “Resolution of singularities of the orbit spaces $G_{n,2}/T^n$”, Proc. Steklov Inst. Math., 317 (2022), 21–54 | DOI | DOI | MR | Zbl

[6] V. M. Buchstaber and S. Terzić, “The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}/\!/(\mathbb C^*)^n$ of the Grassmann manifolds $G_{n,2}$”, Sb. Math., 214:12 (2023), 1694–1720 | DOI | DOI | MR | Zbl

[7] Buchstaber V.M., Terzić S., Moduli space of weighted pointed stable curves and toric topology of Grassmann manifolds, E-print, 2024, arXiv: 2410.01059 [math.AG] | DOI

[8] Ceyhan Ö., “Chow groups of the moduli spaces of weighted pointed stable curves of genus zero”, Adv. Math., 221:6 (2009), 1964–1978 | DOI | MR | Zbl

[9] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | MR | Zbl | Zbl

[10] Goresky M., MacPherson R., “On the topology of algebraic torus actions”, Algebraic groups (Utrecht 1986: Proc. symp. in honour of T. A. Springer), Lect. Notes Math., 1271, Springer, Berlin, 1987, 73–90 | DOI | MR

[11] Hassett B., “Moduli spaces of weighted pointed stable curves”, Adv. Math., 173:2 (2003), 316–352 | DOI | MR | Zbl

[12] Kapranov M.M., “Chow quotients of Grassmannians. I”, I.M. Gelfand seminar, Part 2, Adv. Sov. Math., 16, Am. Math. Soc., Providence, RI, 1993, 29–110 | MR | Zbl

[13] Karshon Y., Tolman S., “Topology of complexity one quotients”, Pac. J. Math., 308:2 (2020), 333–346 | DOI | MR | Zbl

[14] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Am. Math. Soc., 330:2 (1992), 545–574 | DOI | MR | Zbl

[15] Losev A., Manin Yu., “New moduli spaces of pointed curves and pencils of flat connections”, Mich. Math. J., 48:1 (2000), 443–472 | DOI | MR | Zbl

[16] Manin Yu., “Moduli stacks $\overline {L}_{g,S}$”, Moscow Math. J., 4:1 (2004), 181–198 | DOI | MR | Zbl

[17] Süß H., “Toric topology of the Grassmannian of planes in $\mathbb {C}^5$ and the del Pezzo surface of degree 5”, Moscow Math. J., 21:3 (2021), 639–652 | DOI | MR | Zbl

[18] Tavakol M., “The Chow ring of the moduli space of curves of genus zero”, J. Pure Appl. Algebra, 221:4 (2017), 757–772 | DOI | MR | Zbl

[19] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl