Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 193-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider (not necessarily free) actions of subgroups $H\subset \mathbb Z_2^m$ on the real moment–angle manifold $\mathbb R\mathcal Z_P$ corresponding to a simple convex $n$-polytope $P$ with $m$ facets. A criterion for the orbit space $\mathbb R\mathcal Z_P/H$ to be a topological manifold (perhaps with boundary) can be extracted from results by M. A. Mikhailova and C. Lange. For any dimension $n$ we construct a series of manifolds $\mathbb R\mathcal Z_P/H$ homeomorphic to $S^n$ and a series of manifolds $M^n=\mathbb R\mathcal Z_P/H$ admitting a hyperelliptic involution $\tau \in \mathbb Z_2^m/H$, that is, an involution $\tau $ such that $M^n/\langle \tau \rangle $ is homeomorphic to $S^n$. For any simple $3$-polytope $P$ we classify all subgroups $H\subset \mathbb Z_2^m$ such that $\mathbb R\mathcal Z_P/H$ is homeomorphic to $S^3$. For any simple $3$-polytope $P$ and any subgroup $H\subset \mathbb Z_2^m$ we classify all hyperelliptic involutions $\tau \in \mathbb Z_2^m/H$ acting on $\mathbb R\mathcal Z_P/H$. As a corollary we show that a three-dimensional small cover has three hyperelliptic involutions in $\mathbb Z_2^3$ if and only if it is a rational homology $3$-sphere and if and only if it corresponds to a triple of Hamiltonian cycles such that each edge of the polytope belongs to exactly two of them.
Keywords: non-free action of a finite group, convex polytope, real moment–angle manifold, hyperelliptic manifold, rational homology sphere, Hamiltonian cycle.
@article{TRSPY_2024_326_a8,
     author = {Nikolai Yu. Erokhovets},
     title = {Manifolds {Realized} as {Orbit} {Spaces} of {Non-free} $\mathbb Z_2^k${-Actions} on {Real} {Moment{\textendash}Angle} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {193--239},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/}
}
TY  - JOUR
AU  - Nikolai Yu. Erokhovets
TI  - Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds
JO  - Informatics and Automation
PY  - 2024
SP  - 193
EP  - 239
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/
LA  - ru
ID  - TRSPY_2024_326_a8
ER  - 
%0 Journal Article
%A Nikolai Yu. Erokhovets
%T Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds
%J Informatics and Automation
%D 2024
%P 193-239
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/
%G ru
%F TRSPY_2024_326_a8
Nikolai Yu. Erokhovets. Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 193-239. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/

[1] Ayzenberg A., Gorchakov V., “Toric orbit spaces which are manifolds”, Arnold Math. J., 10:3 (2024), 387–408 | DOI | MR | Zbl

[2] A. A. Ayzenberg and D. V. Gugnin, “On actions of tori and quaternionic tori on products of spheres”, Proc. Steklov Inst. Math., 326 (2024), 1–10 | DOI | DOI

[3] Bredon G.E., Introduction to compact transformation groups, Pure Appl. Math., 46, Acad. Press, New York, 1972 | MR | Zbl

[4] V. M. Buchstaber and N. Yu. Erokhovets, “Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes”, Izv. Math., 81:5 (2017), 901–972 | DOI | DOI | MR | Zbl

[5] Buchstaber V.M., Erokhovets N.Yu., “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy: Introductory lectures, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Scientific, Hackensack, NJ, 2018, 67–178 ; arXiv: 1609.02949 [math.AT] | DOI | MR | Zbl | DOI

[6] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russ. Math. Surv., 72:2 (2017), 199–256 | DOI | DOI | MR | Zbl

[7] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[8] Choi S., Park H., “On the cohomology and their torsion of real toric objects”, Forum math., 29:3 (2017), 543–553 ; arXiv: 1311.7056v1 [math.AT] | DOI | MR | Zbl | DOI

[9] Choi S., Park H., “Multiplicative structure of the cohomology ring of real toric spaces”, Homology Homotopy Appl., 22:1 (2020), 97–115 | DOI | MR | Zbl

[10] Davis M.W., The geometry and topology of Coxeter groups, LMS Monogr. Ser., 32, Princeton Univ. Press, Princeton, NJ, 2008 | MR | Zbl

[11] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[12] Davis M., Januszkiewicz T., Scott R., “Nonpositive curvature of blow-ups”, Sel. math. New Ser., 4:4 (1998), 491–547 | DOI | MR | Zbl

[13] N. Yu. Erokhovets, “Canonical geometrization of orientable 3-manifolds defined by vector colourings of 3-polytopes”, Sb. Math., 213:6 (2022), 752–793 | DOI | DOI | MR | Zbl

[14] Erokhovets N.Yu., Four-manifolds defined by vector-colorings of simple polytopes, E-print, 2024, arXiv: 2407.20575 [math.AT] | DOI

[15] Ferrari L., Kolpakov A., Slavich L., “Cusps of hyperbolic 4-manifolds and rational homology spheres”, Proc. London Math. Soc. Ser. 3, 123:6 (2021), 636–648 | DOI | MR | Zbl

[16] Ferrari L., Kolpakov A., Reid A.W., “Infinitely many arithmetic hyperbolic rational homology 3-spheres that bound geometrically”, Trans. Am. Math. Soc., 376:3 (2023), 1979–1997 | DOI | MR | Zbl

[17] Fetter H.L., “Some basic properties of multiple Hamiltonian covers”, Discrete Appl. Math., 154:13 (2006), 1803–1815 | DOI | MR | Zbl

[18] Gorchakov V., Equivariantly formal 2-torus actions of complexity one, E-print, 2023, arXiv: 2304.00936v1 [math.AT] | DOI

[19] Gorchakov V., Three-dimensional small covers and links, E-print, 2024, arXiv: 2408.12557v1 [math.AT] | DOI

[20] E. Ya. Grinberg, “Plane homogeneous graphs of degree three without Hamiltonian cycles”, Latv. Math. Annu., 4 (1968), 51–56 | MR | MR | Zbl

[21] Grünbaum B., Convex polytopes, Grad. Texts Math., 221, 2nd ed., Springer, New York, 2003 | DOI | MR

[22] D. V. Gugnin, “Branched coverings of manifolds and $nH$-spaces”, Funct. Anal. Appl., 53:2 (2019), 133–136 | DOI | DOI | MR | Zbl

[23] I. V. Izmestiev, “Three-dimensional manifolds defined by coloring a simple polytope”, Math. Notes, 69:3–4 (2001), 340–346 | DOI | DOI | MR | Zbl

[24] M. Joswig, “The group of projectivities and colouring of the facets of a simple polytope”, Russ. Math. Surv., 56:3 (2001), 584–585 | DOI | DOI | MR | Zbl

[25] Kardoš F., “A computer-assisted proof of the Barnette–Goodey conjecture: Not only fullerene graphs are Hamiltonian”, SIAM J. Discrete Math., 34:1 (2020), 62–100 ; arXiv: 1409.2440 [math.CO] | DOI | MR | Zbl | DOI

[26] Kolpakov A., Martelli B., Tschantz S., “Some hyperbolic three-manifolds that bound geometrically”, Proc. Am. Math. Soc., 143:9 (2015), 4103–4111 | DOI | MR | Zbl

[27] Koretskii A., One of the two simple 4-polytopes with minimal number of facets allowing a good coloring in 3 colors, 2024 https://youtu.be/UdNZD6HjdfY

[28] Kotsig A., “Postroenie gamiltonovskikh grafov tretei stepeni”, Čas. pěstování mat., 87:2 (1962), 148–168 | DOI

[29] Kotzig A., “Hamilton graphs and Hamilton circuits”, Theory of graphs and its applications (Proc. Symp. Smolenice, 1963), Publ. House Czech. Acad. Sci, Prague, 1964, 63–82 | MR

[30] Lange C., “When is the underlying space of an orbifold a manifold?”, Trans. Am. Math. Soc., 372:4 (2019), 2799–2828 | DOI | MR | Zbl

[31] Lange C., Mikhaîlova M.A., “Classification of finite groups generated by reflections and rotations”, Transform. Groups, 21:4 (2016), 1155–1201 | DOI | MR | Zbl

[32] Mednykh A.D., “Three-dimensional hyperelliptic manifolds”, Ann. Global. Anal. Geom., 8:1 (1990), 13–19 | DOI | MR | Zbl

[33] M. A. Mikhaĭlova, “On the quotient space modulo the action of a finite group generated by pseudoreflections”, Math. USSR, Izv., 24:1 (1985), 99–119 | DOI | MR | Zbl | Zbl

[34] Nakayama H., Nishimura Y., “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl

[35] O. G. Styrt, “On the orbit space of a compact linear Lie group with commutative connected component”, Trans. Moscow Math. Soc., 2009 (2009), 171–206 | DOI | MR | Zbl

[36] Suciu A., Trevisan A., Real toric varieties and abelian covers of generalized Davis–Januszkiewicz spaces, Preprint, Vrije Univ., Amsterdam, 2012 | MR

[37] Trevisan A., Generalized Davis–Januszkiewicz spaces and their applications to algebra and topology, PhD thesis, Vrije Univ., Amsterdam, 2012 http://dspace.ubvu.vu.nl/handle/1871/32835 | MR

[38] Tutte W.T., “On Hamiltonian circuits”, J. London Math. Soc., 21:2 (1946), 98–101 | DOI | MR | Zbl

[39] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sib. Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl

[40] A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russ. Math. Surv., 72:2 (2017), 335–374 | DOI | DOI | MR | Zbl

[41] A. Yu. Vesnin and A. D. Mednykh, “Spherical Coxeter groups and hyperelliptic 3-manifolds”, Math. Notes, 66:2 (1999), 135–138 | DOI | DOI | MR | Zbl

[42] A. Yu. Vesnin and A. D. Mednykh, “Three-dimensional hyperelliptic manifolds and Hamiltonian graphs”, Sib. Math. J., 40:4 (1999), 628–643 | DOI | MR

[43] A. Yu. Vesnin and A. D. Mednykh, “Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions”, Sib. Math. J., 40:5 (1999), 873–886 ; Tsigler G.M., Teoriya mnogogrannikov, MTsNMO, M., 2014 | DOI | MR | Zbl

[44] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl