@article{TRSPY_2024_326_a8,
author = {Nikolai Yu. Erokhovets},
title = {Manifolds {Realized} as {Orbit} {Spaces} of {Non-free} $\mathbb Z_2^k${-Actions} on {Real} {Moment{\textendash}Angle} {Manifolds}},
journal = {Informatics and Automation},
pages = {193--239},
year = {2024},
volume = {326},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/}
}
TY - JOUR AU - Nikolai Yu. Erokhovets TI - Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds JO - Informatics and Automation PY - 2024 SP - 193 EP - 239 VL - 326 UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/ LA - ru ID - TRSPY_2024_326_a8 ER -
Nikolai Yu. Erokhovets. Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 193-239. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a8/
[1] Ayzenberg A., Gorchakov V., “Toric orbit spaces which are manifolds”, Arnold Math. J., 10:3 (2024), 387–408 | DOI | MR | Zbl
[2] A. A. Ayzenberg and D. V. Gugnin, “On actions of tori and quaternionic tori on products of spheres”, Proc. Steklov Inst. Math., 326 (2024), 1–10 | DOI | DOI
[3] Bredon G.E., Introduction to compact transformation groups, Pure Appl. Math., 46, Acad. Press, New York, 1972 | MR | Zbl
[4] V. M. Buchstaber and N. Yu. Erokhovets, “Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes”, Izv. Math., 81:5 (2017), 901–972 | DOI | DOI | MR | Zbl
[5] Buchstaber V.M., Erokhovets N.Yu., “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy: Introductory lectures, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Scientific, Hackensack, NJ, 2018, 67–178 ; arXiv: 1609.02949 [math.AT] | DOI | MR | Zbl | DOI
[6] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russ. Math. Surv., 72:2 (2017), 199–256 | DOI | DOI | MR | Zbl
[7] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[8] Choi S., Park H., “On the cohomology and their torsion of real toric objects”, Forum math., 29:3 (2017), 543–553 ; arXiv: 1311.7056v1 [math.AT] | DOI | MR | Zbl | DOI
[9] Choi S., Park H., “Multiplicative structure of the cohomology ring of real toric spaces”, Homology Homotopy Appl., 22:1 (2020), 97–115 | DOI | MR | Zbl
[10] Davis M.W., The geometry and topology of Coxeter groups, LMS Monogr. Ser., 32, Princeton Univ. Press, Princeton, NJ, 2008 | MR | Zbl
[11] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[12] Davis M., Januszkiewicz T., Scott R., “Nonpositive curvature of blow-ups”, Sel. math. New Ser., 4:4 (1998), 491–547 | DOI | MR | Zbl
[13] N. Yu. Erokhovets, “Canonical geometrization of orientable 3-manifolds defined by vector colourings of 3-polytopes”, Sb. Math., 213:6 (2022), 752–793 | DOI | DOI | MR | Zbl
[14] Erokhovets N.Yu., Four-manifolds defined by vector-colorings of simple polytopes, E-print, 2024, arXiv: 2407.20575 [math.AT] | DOI
[15] Ferrari L., Kolpakov A., Slavich L., “Cusps of hyperbolic 4-manifolds and rational homology spheres”, Proc. London Math. Soc. Ser. 3, 123:6 (2021), 636–648 | DOI | MR | Zbl
[16] Ferrari L., Kolpakov A., Reid A.W., “Infinitely many arithmetic hyperbolic rational homology 3-spheres that bound geometrically”, Trans. Am. Math. Soc., 376:3 (2023), 1979–1997 | DOI | MR | Zbl
[17] Fetter H.L., “Some basic properties of multiple Hamiltonian covers”, Discrete Appl. Math., 154:13 (2006), 1803–1815 | DOI | MR | Zbl
[18] Gorchakov V., Equivariantly formal 2-torus actions of complexity one, E-print, 2023, arXiv: 2304.00936v1 [math.AT] | DOI
[19] Gorchakov V., Three-dimensional small covers and links, E-print, 2024, arXiv: 2408.12557v1 [math.AT] | DOI
[20] E. Ya. Grinberg, “Plane homogeneous graphs of degree three without Hamiltonian cycles”, Latv. Math. Annu., 4 (1968), 51–56 | MR | MR | Zbl
[21] Grünbaum B., Convex polytopes, Grad. Texts Math., 221, 2nd ed., Springer, New York, 2003 | DOI | MR
[22] D. V. Gugnin, “Branched coverings of manifolds and $nH$-spaces”, Funct. Anal. Appl., 53:2 (2019), 133–136 | DOI | DOI | MR | Zbl
[23] I. V. Izmestiev, “Three-dimensional manifolds defined by coloring a simple polytope”, Math. Notes, 69:3–4 (2001), 340–346 | DOI | DOI | MR | Zbl
[24] M. Joswig, “The group of projectivities and colouring of the facets of a simple polytope”, Russ. Math. Surv., 56:3 (2001), 584–585 | DOI | DOI | MR | Zbl
[25] Kardoš F., “A computer-assisted proof of the Barnette–Goodey conjecture: Not only fullerene graphs are Hamiltonian”, SIAM J. Discrete Math., 34:1 (2020), 62–100 ; arXiv: 1409.2440 [math.CO] | DOI | MR | Zbl | DOI
[26] Kolpakov A., Martelli B., Tschantz S., “Some hyperbolic three-manifolds that bound geometrically”, Proc. Am. Math. Soc., 143:9 (2015), 4103–4111 | DOI | MR | Zbl
[27] Koretskii A., One of the two simple 4-polytopes with minimal number of facets allowing a good coloring in 3 colors, 2024 https://youtu.be/UdNZD6HjdfY
[28] Kotsig A., “Postroenie gamiltonovskikh grafov tretei stepeni”, Čas. pěstování mat., 87:2 (1962), 148–168 | DOI
[29] Kotzig A., “Hamilton graphs and Hamilton circuits”, Theory of graphs and its applications (Proc. Symp. Smolenice, 1963), Publ. House Czech. Acad. Sci, Prague, 1964, 63–82 | MR
[30] Lange C., “When is the underlying space of an orbifold a manifold?”, Trans. Am. Math. Soc., 372:4 (2019), 2799–2828 | DOI | MR | Zbl
[31] Lange C., Mikhaîlova M.A., “Classification of finite groups generated by reflections and rotations”, Transform. Groups, 21:4 (2016), 1155–1201 | DOI | MR | Zbl
[32] Mednykh A.D., “Three-dimensional hyperelliptic manifolds”, Ann. Global. Anal. Geom., 8:1 (1990), 13–19 | DOI | MR | Zbl
[33] M. A. Mikhaĭlova, “On the quotient space modulo the action of a finite group generated by pseudoreflections”, Math. USSR, Izv., 24:1 (1985), 99–119 | DOI | MR | Zbl | Zbl
[34] Nakayama H., Nishimura Y., “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl
[35] O. G. Styrt, “On the orbit space of a compact linear Lie group with commutative connected component”, Trans. Moscow Math. Soc., 2009 (2009), 171–206 | DOI | MR | Zbl
[36] Suciu A., Trevisan A., Real toric varieties and abelian covers of generalized Davis–Januszkiewicz spaces, Preprint, Vrije Univ., Amsterdam, 2012 | MR
[37] Trevisan A., Generalized Davis–Januszkiewicz spaces and their applications to algebra and topology, PhD thesis, Vrije Univ., Amsterdam, 2012 http://dspace.ubvu.vu.nl/handle/1871/32835 | MR
[38] Tutte W.T., “On Hamiltonian circuits”, J. London Math. Soc., 21:2 (1946), 98–101 | DOI | MR | Zbl
[39] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sib. Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl
[40] A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russ. Math. Surv., 72:2 (2017), 335–374 | DOI | DOI | MR | Zbl
[41] A. Yu. Vesnin and A. D. Mednykh, “Spherical Coxeter groups and hyperelliptic 3-manifolds”, Math. Notes, 66:2 (1999), 135–138 | DOI | DOI | MR | Zbl
[42] A. Yu. Vesnin and A. D. Mednykh, “Three-dimensional hyperelliptic manifolds and Hamiltonian graphs”, Sib. Math. J., 40:4 (1999), 628–643 | DOI | MR
[43] A. Yu. Vesnin and A. D. Mednykh, “Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions”, Sib. Math. J., 40:5 (1999), 873–886 ; Tsigler G.M., Teoriya mnogogrannikov, MTsNMO, M., 2014 | DOI | MR | Zbl
[44] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | MR | Zbl