The Integral Cohomology Ring of Symmetric Products of CW Complexes and Topology of Symmetric Products of Riemann Surfaces
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 148-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the integral cohomology ring modulo torsion $H^*(\mathrm {Sym}^n X;\mathbb {Z})/\mathrm {Tor}$ for symmetric products of connected countable CW complexes of finite homology type is a functor of the ring $H^*(X;\mathbb {Z})/\mathrm {Tor}$, and we give an explicit description of this functor. There is an important particular case of this situation with $X$ a compact Riemann surface $M^2_g$ of genus $g$. Macdonald's famous theorem of 1962 provides an explicit description of the integral cohomology ring $H^*(\mathrm {Sym}^n M^2_g;\mathbb {Z})$. However, a careful analysis of Macdonald's original proof shows that it has three gaps. All these gaps were filled by Seroul in 1972, and thus Seroul obtained a complete proof of Macdonald's theorem. Nevertheless, in the unstable case $2\le n\le 2g-2$ there is a subclause of Macdonald's theorem that needs to be corrected even for rational cohomology rings. In the paper we prove the following well-known conjecture (Blagojević–Grujić–Živaljević, 2003): Denote by $M^2_{g,k}$ an arbitrary compact Riemann surface of genus $g\ge 0$ with $k\ge 1$ punctures. Take numbers $n\ge 2$, $g,g'\ge 0$, and $k,k'\ge 1$ such that $2g+k=2g'+k'$ and $g\ne g'$. Then the homotopy equivalent open manifolds $\mathrm {Sym}^n M^2_{g,k}$ and $\mathrm {Sym}^n M^2_{g',k'}$ are not homeomorphic.
Keywords: symmetric products, Riemann surfaces, integral cohomology, characteristic classes.
@article{TRSPY_2024_326_a6,
     author = {D. V. Gugnin},
     title = {The {Integral} {Cohomology} {Ring} of {Symmetric} {Products} of {CW} {Complexes} and {Topology} of {Symmetric} {Products} of {Riemann} {Surfaces}},
     journal = {Informatics and Automation},
     pages = {148--172},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a6/}
}
TY  - JOUR
AU  - D. V. Gugnin
TI  - The Integral Cohomology Ring of Symmetric Products of CW Complexes and Topology of Symmetric Products of Riemann Surfaces
JO  - Informatics and Automation
PY  - 2024
SP  - 148
EP  - 172
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a6/
LA  - ru
ID  - TRSPY_2024_326_a6
ER  - 
%0 Journal Article
%A D. V. Gugnin
%T The Integral Cohomology Ring of Symmetric Products of CW Complexes and Topology of Symmetric Products of Riemann Surfaces
%J Informatics and Automation
%D 2024
%P 148-172
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a6/
%G ru
%F TRSPY_2024_326_a6
D. V. Gugnin. The Integral Cohomology Ring of Symmetric Products of CW Complexes and Topology of Symmetric Products of Riemann Surfaces. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 148-172. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a6/

[1] Bertram A., Thaddeus M., “On the quantum cohomology of a symmetric product of an algebraic curve”, Duke Math. J., 108:2 (2001), 329–362 | DOI | MR | Zbl

[2] Blagojević P., Grujić V., Živaljević R., “Symmetric products of surfaces and the cycle index”, Israel J. Math., 138 (2003), 61–72 | DOI | MR | Zbl

[3] Blagojević P., Grujić V., Živaljević R., “Arrangements of symmetric products of spaces”, Topology Appl., 148:1–3 (2005), 213–232 | DOI | MR | Zbl

[4] Boote Y., Ray N., “On the symmetric squares of complex and quaternionic projective space”, Glasgow Math. J., 60:3 (2018), 703–729 | DOI | MR | Zbl

[5] Dold A., “Homology of symmetric products and other functors of complexes”, Ann. Math. Ser. 2, 68:1 (1958), 54–80 | DOI | MR | Zbl

[6] Dold A., “Decomposition theorems for $S(n)$-complexes”, Ann. Math. Ser. 2, 75:1 (1962), 8–16 | DOI | MR | Zbl

[7] Dold A., Puppe D., “Homologie nicht-additiver Funktoren. Anwendungen”, Ann. Inst. Fourier, 11 (1961), 201–312 | DOI | MR | Zbl

[8] D. V. Gugnin, “Polynomially dependent homomorphisms and Frobenius $n$-homomorphisms”, Proc. Steklov Inst. Math., 266 (2009), 59–90 | DOI | MR | Zbl

[9] D. V. Gugnin, “Topological applications of graded Frobenius $n$-homomorphisms”, Trans. Moscow Math. Soc., 72 (2011), 97–142 | DOI | MR

[10] D. V. Gugnin, “Topological applications of graded Frobenius $n$-homomorphisms. II”, Trans. Moscow Math. Soc., 73 (2012), 167–182 | DOI | MR | Zbl

[11] Macdonald I.G., “Symmetric products of an algebraic curve”, Topology, 1:4 (1962), 319–343 | DOI | MR | Zbl

[12] Mattuck A., “Picard bundles”, Ill. J. Math., 5:4 (1961), 550–564 | DOI | MR | Zbl

[13] Milgram R.J., “The homology of symmetric products”, Trans. Am. Math. Soc., 138 (1969), 251–265 | DOI | MR | Zbl

[14] Nakaoka M., “Cohomology of symmetric products”, J. Inst. Polytechn. Osaka City Univ. Ser. A, 8:2 (1957), 121–145 | MR | Zbl

[15] Ong B.W., “The homotopy type of the symmetric products of bouquets of circles”, Int. J. Math., 14:5 (2003), 489–497 | DOI | MR | Zbl

[16] Schwarzenberger R.L.E., “Jacobians and symmetric products”, Ill. J. Math., 7:2 (1963), 257–268 | DOI | MR | Zbl

[17] Seroul R., “Anneau de cohomologie entière et $KU^*$-théorie d'un produit symétrique d'une surface de Riemann”, Publ. dép. math., Lyon, 9:4 (1972), 27–66 | MR

[18] Sullivan D., “On the intersection ring of compact three manifolds”, Topology, 14:3 (1975), 275–277 | DOI | MR | Zbl

[19] Thom R., “Espaces fibrés en sphères et carrés de Steenrod”, Ann. sci. Éc. norm. supér. Sér. 3, 69 (1952), 109–182 | DOI | MR | Zbl

[20] Trenčevski K., Dimovski D., Complex commutative vector valued groups, Maced. Acad. Sci. Arts, Skopje, 1992 | MR

[21] Trenčevski K., Dimovski D., “On the affine and projective commutative $(m+k,m)$-groups”, J. Algebra, 240:1 (2001), 338–365 | DOI | MR | Zbl