Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 101-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a three-parameter family of linear special double confluent Heun equations introduced and studied by V. M. Buchstaber and S. I. Tertychniy, which is an equivalent presentation of a model of Josephson junction in superconductivity. Buchstaber and Tertychniy have shown that the set of those complex parameters for which the Heun equation has a polynomial solution is a union of explicit algebraic curves in $\mathbb C^2$, so-called spectral curves, indexed by $\ell \in \mathbb N$. In a joint paper with I. V. Netay, the author showed that each spectral curve is irreducible in the parameter space of the Heun equation (and consists of two irreducible components in the parameter space of the Josephson junction model). Netay discovered numerically and conjectured a genus formula for spectral curves. He reduced it to the conjecture stating that each of the spectral curves is regular in $\mathbb C^2$ outside a coordinate axis. Here we prove Netay's regularity and genus conjectures. To prove them, we study a four-parameter family of linear systems on the Riemann sphere that extends a family of linear systems equivalent to the Heun equations. It yields an equivalent presentation of the extension of the model of Josephson junction introduced by the author in a joint paper with Yu. P. Bibilo. We describe the so-called determinantal surfaces, which consist of linear systems with polynomial solutions, as explicit affine algebraic hypersurfaces in $\mathbb C^3$. The spectral curves are their intersections with the hyperplane corresponding to the initial model. We prove that each determinantal surface is regular outside an appropriate hyperplane and consists of two rational irreducible components. The proofs use the theory of Stokes phenomena, the holomorphic vector bundle technique, and isomonodromic deformations governed by the Painlevé III equation.
Keywords: model of Josephson junction, special double confluent Heun equation, spectral curve
Mots-clés : polynomial solution, isomonodromic deformation, Painlevé III equation.
@article{TRSPY_2024_326_a5,
     author = {Alexey A. Glutsyuk},
     title = {Extended {Model} of {Josephson} {Junction,} {Linear} {Systems} with {Polynomial} {Solutions,} {Determinantal} {Surfaces,} and {Painlev\'e} {III} {Equations}},
     journal = {Informatics and Automation},
     pages = {101--147},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a5/}
}
TY  - JOUR
AU  - Alexey A. Glutsyuk
TI  - Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations
JO  - Informatics and Automation
PY  - 2024
SP  - 101
EP  - 147
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a5/
LA  - ru
ID  - TRSPY_2024_326_a5
ER  - 
%0 Journal Article
%A Alexey A. Glutsyuk
%T Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations
%J Informatics and Automation
%D 2024
%P 101-147
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a5/
%G ru
%F TRSPY_2024_326_a5
Alexey A. Glutsyuk. Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 101-147. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a5/

[1] Anderson P.W., Rowell J.M., “Probable observation of the Josephson superconducting tunneling effect”, Phys. Rev. Lett., 10:6 (1963), 230–232 | DOI

[2] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundl. Math. Wiss., 250, 2nd ed., Springer, New York, 1988 | MR

[3] V. I. Arnold and Yu. S. Ilyashenko, “Ordinary differential equations”, Dynamical Systems–1, Encycl. Math. Sci., 1, Springer, Berlin, 1988, 1–148 | MR

[4] Balser W., Jurkat W.B., Lutz D.A., “A general theory of invariants for meromorphic differential equations. I: Formal invariants”, Funkc. Ekvacioj, 22:2 (1979), 197–221 | MR | Zbl

[5] Balser W., Jurkat W.B., Lutz D.A., “Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations”, J. Math. Anal. Appl., 71:1 (1979), 48–94 | DOI | MR | Zbl

[6] Barone A., Paternò G., Physics and applications of the Josephson effect, J. Wiley and Sons, New York, 1982 | DOI

[7] Beauville A., Complex algebraic surfaces, LMS Stud. Texts, 34, 2nd ed., Cambridge Univ. Press, Cambridge, 1996 | DOI | MR | Zbl

[8] Bibilo Yu., Glutsyuk A., “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation”, Nonlinearity, 35:10 (2022), 5427–5480 | DOI | MR | Zbl

[9] Bolibrukh A.A., “Problema Rimana–Gilberta na kompleksnoi proektivnoi pryamoi”, Mat. zametki, 46:3 (1989), 118–120 | MR | Zbl

[10] Bolibruch A., “Inverse problems for linear differential equations with meromorphic coefficients”, Isomonodromic deformations and applications in physics: CRM Workshop, Montréal, 2000, CRM Proc. Lect. Notes, 31, Am. Math. Soc., Providence, RI, 2002, 3–25 | DOI | MR | Zbl

[11] Bolibrukh A.A., Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2018

[12] Buchstaber V.M., Glutsyuk A.A., “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations”, Nonlinearity, 29:12 (2016), 3857–3870 | DOI | MR | Zbl

[13] V. M. Buchstaber and A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect”, Proc. Steklov Inst. Math., 297 (2017), 50–89 | DOI | DOI | MR | Zbl

[14] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “On properties of the differential equation describing the dynamics of an overdamped Josephson junction”, Russ. Math. Surv., 59:2 (2004), 377–378 | DOI | DOI | MR

[15] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “Features of the dynamics of a Josephson junction biased by a sinusoidal microwave current”, J. Commun. Technol. Electron., 51:6 (2006), 713–718 | DOI | MR

[16] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychniy, “Rotation number quantization effect”, Theor. Math. Phys., 162:2 (2010), 211–221 | DOI | DOI | MR | Zbl

[17] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “A system on a torus modelling the dynamics of a Josephson junction”, Russ. Math. Surv., 67:1 (2012), 178–180 | DOI | DOI | MR | Zbl

[18] V. M. Buchstaber and S. I. Tertychniy, “Explicit solution family for the equation of the resistively shunted Josephson junction model”, Theor. Math. Phys., 176:2 (2013), 965–986 | DOI | DOI | MR | Zbl

[19] V. M. Buchstaber and S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, Theor. Math. Phys., 182:3 (2015), 329–355 | DOI | DOI | MR | Zbl

[20] V. M. Bukhshtaber and S. I. Tertychnyi, “On a remarkable sequence of Bessel matrices”, Math. Notes, 98:5–6 (2015), 714–724 | DOI | DOI | MR | Zbl

[21] V. M. Buchstaber and S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations”, Funct. Anal. Appl., 50:3 (2016), 176–192 | DOI | DOI | MR | Zbl

[22] V. M. Buchstaber and S. I. Tertychnyi, “Representations of the Klein group determined by quadruples of polynomials associated with the double confluent Heun equation”, Math. Notes, 103:3–4 (2018), 357–371 | DOI | DOI | MR | Zbl

[23] E. M. Chirka, Complex Analytic Sets, Math. Appl., Sov. Ser., 46, Kluwer, Dordrecht, 1989 | MR | Zbl

[24] Foote R.L., “Geometry of the Prytz planimeter”, Rep. Math. Phys., 42:1–2 (1998), 249–271 | DOI | MR | Zbl

[25] Foote R., Levi M., Tabachnikov S., “Tractrices, bicycle tire tracks, hatchet planimeters, and a 100-year-old conjecture”, Am. Math. Mon., 120:3 (2013), 199–216 | DOI | MR | Zbl

[26] Glutsyuk A.A., “On constrictions of phase-lock areas in model of overdamped Josephson effect and transition matrix of the double-confluent Heun equation”, J. Dyn. Control Syst., 25:3 (2019), 323–349 | DOI | MR | Zbl

[27] Glutsyuk A., “On germs of constriction curves in model of overdamped Josephson junction, dynamical isomonodromic foliation and Painlevé 3 equation”, Moscow Math. J., 23:4 (2023), 479–513 | DOI | MR | Zbl

[28] A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, and I. V. Schurov, “On the adjacency quantization in an equation modeling the Josephson effect”, Funct. Anal. Appl., 48:4 (2014), 272–285 | DOI | DOI | MR | Zbl

[29] Glutsyuk A.A., Netay I.V., “On spectral curves and complexified boundaries of the phase-lock areas in a model of Josephson junction”, J. Dyn. Control Syst., 26:4 (2020), 785–820 | DOI | MR | Zbl

[30] Guckenheimer J., Ilyashenko Yu., “The duck and the devil: Canards on the staircase”, Moscow Math. J., 1:1 (2001), 27–47 | DOI | MR | Zbl

[31] Hironaka H., “On resolution of singularities (characteristic zero)”, Proc. Int. Congr. Math., Stockholm, 1962, Inst. Mittag-Leffler, Djursholm, 1963, 507–521 | MR

[32] V. P. Il'in and Yu. I. Kuznetsov, Tridiagonal Matrices and Their Applications, Nauka, Moscow, 1985 (in Russian) | Zbl

[33] Yu. S. Il'yashenko and A. G. Khovanskii, “Galois groups, Stokes operators and a theorem of Ramis”, Funct. Anal. Appl., 24:4 (1990), 286–296 | DOI | MR | Zbl

[34] Yu. S. Ilyashenko, D. A. Ryzhov, and D. A. Filimonov, “Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations”, Funct. Anal. Appl., 45:3 (2011), 192–203 | DOI | DOI | MR | Zbl

[35] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18:3 (1982), 1137–1161 | DOI | MR | Zbl

[36] Josephson B.D., “Possible new effects in superconductive tunnelling”, Phys. Lett., 1:7 (1962), 251–253 | DOI | Zbl

[37] Jurkat W., Lutz D., Peyerimhoff A., “Birkhoff invariants and effective calculations for meromorphic linear differential equations. I”, J. Math. Anal. Appl., 53:2 (1976), 438–470 | DOI | MR | Zbl

[38] Kleptsyn V.A., Romaskevich O.L., Schurov I.V., “Effekt Dzhozefsona i bystro-medlennye sistemy”, Nanostruktury. Mat. fizika i modelirovanie, 8:1 (2013), 31–46

[39] Klimenko A., Romaskevich O., “Asymptotic properties of Arnold tongues and Josephson effect”, Moscow Math. J., 14:2 (2014), 367–384 | DOI | MR | Zbl

[40] Levinson Y., “Quantum noise in a current-biased Josephson junction”, Phys. Rev. B, 67:18 (2003), 184504 | DOI

[41] Likharev K.K., Vvedenie v dinamiku dzhozefsonovskikh perekhodov, Nauka, M., 1985

[42] Likharev K.K., Dynamics of Josephson junctions and circuits, Gordon and Breach, Amsterdam, 1986 | MR

[43] Likharev K.K., Ulrikh B.T., Sistemy s dzhozefsonovskimi kontaktami: Osnovy teorii, Izd-vo MGU, M., 1978

[44] Lin Y., Dai D., Tibboel P., “Existence and uniqueness of tronquée solutions of the third and fourth Painlevé equations”, Nonlinearity, 27:2 (2014), 171–186 | DOI | MR | Zbl

[45] Malgrange B., “Sur les déformations isomonodromiques. I: Singularités régulières”, Mathématique et physique: Sémin. Éc. norm. super. 1979–1982, Prog. Math., 37, Birkhäuser, Boston, 1983, 401–426 | MR

[46] Malmquist J., “Sur les équations différentielles du second ordre dont l'intégrale générale a ses points critiques fixes”, Ark. Mat. Astron. Fys., 17:8 (1923), 1–89

[47] McCumber D.E., “Effect of ac impedance on dc voltage–current characteristics of superconductor weak-link junctions”, J. Appl. Phys., 39:7 (1968), 3113–3118 | DOI

[48] Okamoto K., “Polynomial Hamiltonians associated with Painlevé equations. I”, Proc. Japan Acad. Ser. A, 56:6 (1980), 264–268 | DOI | MR | Zbl

[49] Röhrl H., “On holomorphic families of fiber bundles over the Riemannian sphere”, Mem. Coll. Sci. Univ. Kyoto. Ser. A, 33:3 (1961), 435–477 | DOI | MR | Zbl

[50] V. V. Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications, Springer, Berlin, 1997 | Zbl

[51] Shapiro S., Janus A.R., Holly S., “Effect of microwaves on Josephson currents in superconducting tunneling”, Rev. Mod. Phys., 36:1 (1964), 223–225 | DOI

[52] Shiffman B., “On the removal of singularities of analytic sets”, Mich. Math. J., 15:1 (1968), 111–120 | DOI | MR | Zbl

[53] Sibuya Y., “Stokes phenomena”, Bull. Am. Math. Soc., 83:5 (1977), 1075–1077 | DOI | MR | Zbl

[54] Slavyanov S.Yu., Lay W., Special functions: A unified theory based on singularities, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[55] Stewart W.C., “Current–voltage characteristics of Josephson junctions”, Appl. Phys. Lett., 12:8 (1968), 277–280 | DOI

[56] Tertychniy S.I., Long-term behavior of solutions of the equation $\dot \phi +\sin \phi =f$ with periodic $f$ and the modeling of dynamics of overdamped Josephson junctions, E-print, 2005, arXiv: math-ph/0512058 | DOI

[57] Tertychniy S.I., The modelling of a Josephson junction and Heun polynomials, E-print, 2006, arXiv: math-ph/0601064 | DOI

[58] Tertychniy S.I., “General solution of overdamped Josephson junction equation in the case of phase-lock”, Electron. J. Diff. Eqns., 2007 (2007), 133 | MR | Zbl

[59] Vinnikov V., “Complete description of determinantal representations of smooth irreducible curves”, Linear Algebra Appl., 125 (1989), 103–140 | DOI | MR | Zbl

[60] Vinnikov V., “Self-adjoint determinantal representations of real plane curves”, Math. Ann., 296:3 (1993), 453–479 | DOI | MR | Zbl