New Examples and Partial Classification of 15-Vertex Triangulations of the Quaternionic Projective Plane
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 58-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Brehm and Kühnel (1992) constructed three 15-vertex combinatorial $8$-manifolds “like the quaternionic projective plane” with symmetry groups $\mathrm A_5$, $\mathrm A_4$, and $\mathrm S_3$, respectively. Gorodkov (2016) proved that these three manifolds are in fact PL homeomorphic to $\mathbb H\mathrm P^2$. Note that $15$ is the minimal number of vertices of a combinatorial $8$-manifold that is not PL homeomorphic to $S^8$. In the present paper we construct a lot of new 15-vertex triangulations of $\mathbb H\mathrm P^2$. A surprising fact is that such examples are found for very different symmetry groups, including those not in any way related to the group $\mathrm A_5$. Namely, we find 19 triangulations with symmetry group $\mathrm C_7$, one triangulation with symmetry group $\mathrm C_6\times \mathrm C_2$, 14 triangulations with symmetry group $\mathrm C_6$, 26 triangulations with symmetry group $\mathrm C_5$, one new triangulation with symmetry group $\mathrm A_4$, and 11 new triangulations with symmetry group $\mathrm S_3$. Further, we obtain the following classification result. We prove that, up to isomorphism, there are exactly 75 triangulations of $\mathbb H\mathrm P^2$ with 15 vertices and symmetry group of order at least $4$: the three Brehm–Kühnel triangulations and the 72 new triangulations listed above. On the other hand, we show that there are plenty of triangulations with symmetry groups $\mathrm C_3$ and $\mathrm C_2$, as well as the trivial symmetry group.
Keywords: minimal triangulation, quaternionic projective plane, manifold like a projective plane, vertex-transitive triangulation, combinatorial manifold, Smith theory, fixed point set, symmetry group.
Mots-clés : Kühnel triangulation, transformation group
@article{TRSPY_2024_326_a4,
     author = {Alexander A. Gaifullin},
     title = {New {Examples} and {Partial} {Classification} of {15-Vertex} {Triangulations} of the {Quaternionic} {Projective} {Plane}},
     journal = {Informatics and Automation},
     pages = {58--100},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a4/}
}
TY  - JOUR
AU  - Alexander A. Gaifullin
TI  - New Examples and Partial Classification of 15-Vertex Triangulations of the Quaternionic Projective Plane
JO  - Informatics and Automation
PY  - 2024
SP  - 58
EP  - 100
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a4/
LA  - ru
ID  - TRSPY_2024_326_a4
ER  - 
%0 Journal Article
%A Alexander A. Gaifullin
%T New Examples and Partial Classification of 15-Vertex Triangulations of the Quaternionic Projective Plane
%J Informatics and Automation
%D 2024
%P 58-100
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a4/
%G ru
%F TRSPY_2024_326_a4
Alexander A. Gaifullin. New Examples and Partial Classification of 15-Vertex Triangulations of the Quaternionic Projective Plane. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 58-100. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a4/

[1] Arnoux P., Marin A., “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. II”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:2 (1991), 167–244 | DOI | MR | Zbl

[2] Bagchi B., Datta B., “On Kühnel's 9-vertex complex projective plane”, Geom. dedicata, 50:1 (1994), 1–13 | DOI | MR | Zbl

[3] Bagchi B., Datta B., “A short proof of the uniqueness of Kühnel's 9-vertex complex projective plane”, Adv. Geom., 1:2 (2001), 157–163 | DOI | MR | Zbl

[4] Bagchi B., Datta B., “Non-existence of 6-dimensional pseudomanifolds with complementarity”, Adv. Geom., 4:4 (2004), 537–550 | DOI | MR | Zbl

[5] Borel A., Seminar on transformation groups, Ann. Math. Stud., 46, Princeton Univ. Press, Princeton, NJ, 1960 | DOI | MR | Zbl

[6] Brehm U., Kühnel W., “Combinatorial manifolds with few vertices”, Topology, 26:4 (1987), 465–473 | DOI | MR | Zbl

[7] Brehm U., Kühnel W., “15-vertex triangulations of an 8-manifold”, Math. Ann., 294:1 (1992), 167–193 | DOI | MR | Zbl

[8] Datta B., “Pseudomanifolds with complementarity”, Geom. dedicata, 73:2 (1998), 143–155 | DOI | MR | Zbl

[9] Eells J., \textup {Jr.}, Kuiper N.H., “Manifolds which are like projective planes”, Publ. math. Inst. hautes étud. sci., 14 (1962), 181–222 | DOI | MR | Zbl

[10] A. A. Gaifullin, “Local formulae for combinatorial Pontryagin classes”, Izv. Math., 68:5 (2004), 861–910 | DOI | DOI | MR | Zbl

[11] A. A. Gaifullin, “Computation of characteristic classes of a manifold from a triangulation of it”, Russ. Math. Surv., 60:4 (2005), 615–644 | DOI | DOI | MR | Zbl

[12] A. A. Gaifullin, “Configuration spaces, bistellar moves, and combinatorial formulae for the first Pontryagin class”, Proc. Steklov Inst. Math., 268 (2010), 70–86 | DOI | MR | Zbl

[13] Gaifullin A.A., Triangulations of the quaternionic projective plane and manifolds like the octonionic projective plane, 2023 ; arXiv: https://github.com/agaif/Triangulations-like-OP2, version 22207.08507 [math.CO] | DOI

[14] A. A. Gaifullin, “634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of manifolds like the octonionic projective plane”, Izv. Math., 88:3 (2024), 419–467 ; E-print, arXiv: ; arXiv: 2207.08507 [math.CO]2310.16679 [math.CO] | DOI | DOI | DOI | MR | Zbl | DOI

[15] A. A. Gaifullin, “On possible symmetry groups of 27-vertex triangulations of manifolds like the octonionic projective plane”, Sb. Math., 215:7 (2024), 869–910 | DOI | DOI | DOI | MR | Zbl

[16] A. A. Gaifullin and D. A. Gorodkov, “An explicit local combinatorial formula for the first Pontryagin class”, Russ. Math. Surv., 74:6 (2019), 1120–1122 | DOI | DOI | MR | MR | Zbl

[17] D. A. Gorodkov, “A minimal triangulation of the quaternionic projective plane”, Russ. Math. Surv., 71:6 (2016), 1140–1142 | DOI | DOI | MR | Zbl

[18] Gorodkov D., “A 15-vertex triangulation of the quaternionic projective plane”, Discrete Comput. Geom., 62:2 (2019), 348–373 ; arXiv: 1603.05541 [math.AT] | DOI | MR | Zbl | DOI

[19] Gorodkov D., GAP files for the realization of the algorithm computing the first Pontryagin class of a combinatorial manifold, 2019 https://github.com/denisgorod/1603.05541

[20] Klee V., “A combinatorial analogue of Poincaré's duality theorem”, Can. J. Math., 16 (1964), 517–531 | DOI | MR | Zbl

[21] Köhler E.G., Lutz F.H., Triangulated manifolds with few vertices: Vertex-transitive triangulations. I, E-print, 2005, arXiv: math/0506520 [math.GT] | DOI | MR

[22] Kramer L., “Projective planes and their look-alikes”, J. Diff. Geom., 64:1 (2003), 1–55 ; arXiv: math/0206145 [math.GT] | DOI | MR | Zbl | DOI

[23] Kühnel W., Banchoff T.F., “The 9-vertex complex projective plane”, Math. Intell., 5:3 (1983), 11–22 | DOI | MR | Zbl

[24] Kühnel W., Lassmann G., “The unique 3-neighborly 4-manifold with few vertices”, J. Comb. Theory. Ser. A, 35 (1983), 173–184 | DOI | MR | Zbl

[25] Lutz F.H., Triangulated manifolds with few vertices: Combinatorial manifolds, E-print, 2005, arXiv: math/0506372 [math.CO] | DOI

[26] Lutz F.H., “Combinatorial 3-manifolds with 10 vertices”, Beitr. Algebra Geom., 49:1 (2008), 97–106 ; arXiv: math/0604018 [math.CO] | MR | Zbl | DOI

[27] Milnor J., “On manifolds homeomorphic to the 7-sphere”, Ann. Math. Ser. 2, 64:2 (1956), 399–405 | DOI | MR | Zbl

[28] Novik I., “Upper bound theorems for homology manifolds”, Isr. J. Math., 108:1 (1998), 45–82 | DOI | MR | Zbl

[29] Smith P.A., “Transformations of finite period. II”, Ann. Math. Ser. 2, 40:3 (1939), 690–711 | DOI | MR | Zbl