Models for the Cohomology of Certain Polyhedral Products
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 43-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a commutative ring $\Bbbk $ with unit, we describe and study various differential graded $\Bbbk $-modules and $\Bbbk $-algebras as models for the cohomology of polyhedral products $(\underline {CX\!}\,,\underline {X\!}\,)^K$. Along the way, we prove that the integral cohomology $H^*((D^1,S^0)^K;\mathbb Z)$ of the real moment–angle complex is a Tor module, one that does not come from a geometric setting. As an application, this work sets the stage for studying the based loop space of $\Sigma (\underline {CX\!}\,,\underline {X\!}\,)^K$.
Keywords: polyhedral products, cohomological models.
Mots-clés : moment–angle complexes
@article{TRSPY_2024_326_a3,
     author = {M. Bendersky and J. Grbi\'c},
     title = {Models for the {Cohomology} of {Certain} {Polyhedral} {Products}},
     journal = {Informatics and Automation},
     pages = {43--57},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a3/}
}
TY  - JOUR
AU  - M. Bendersky
AU  - J. Grbić
TI  - Models for the Cohomology of Certain Polyhedral Products
JO  - Informatics and Automation
PY  - 2024
SP  - 43
EP  - 57
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a3/
LA  - ru
ID  - TRSPY_2024_326_a3
ER  - 
%0 Journal Article
%A M. Bendersky
%A J. Grbić
%T Models for the Cohomology of Certain Polyhedral Products
%J Informatics and Automation
%D 2024
%P 43-57
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a3/
%G ru
%F TRSPY_2024_326_a3
M. Bendersky; J. Grbić. Models for the Cohomology of Certain Polyhedral Products. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 43-57. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a3/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “Decompositions of the polyhedral product functor with applications to moment–angle complexes and related spaces”, Proc. Natl. Acad. Sci. USA, 106:30 (2009), 12241–12244 | DOI | MR | Zbl

[2] Bahri A., Bendersky M., Cohen F.R., Gitler S., “Cup-products for the polyhedral product functor”, Math. Proc. Cambridge Philos. Soc., 153:3 (2012), 457–469 | DOI | MR | Zbl

[3] Beben P., Grbić J., “Configuration spaces and polyhedral products”, Adv. Math., 314 (2017), 378–425 | DOI | MR | Zbl

[4] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[5] Cai L., “On products in a real moment–angle manifold”, J. Math. Soc. Japan, 69:2 (2017), 503–528 | DOI | MR | Zbl

[6] Franz M., On the integral cohomology of smooth toric varieties, E-print, 2003, arXiv: math/0308253v1 [math.AT] | DOI | MR

[7] Franz M., “Szczarba's twisting cochain and the Eilenberg–Zilber maps”, Collect. Math., 72:3 (2021), 569–586 | DOI | MR | Zbl

[8] Franz M., “Dga models for moment–angle complexes”, Toric topology and polyhedral products, Fields Inst. Commun., 89, Springer, Cham, 2024, 121–135 ; arXiv: 2006.01571 [math.AT] | DOI | MR | Zbl | DOI

[9] Grbić J., Linton A., “Non-trivial higher Massey products in moment–angle complexes”, Adv. Math., 387 (2021), 107837 | DOI | MR | Zbl

[10] Weiss M., Topology 2: CW-spaces, cohomology and many products, Preprint, Univ. Münster, Münster, 2018/2019 https://ivv5hpp.uni-muenster.de/u/mweis\textunderscore 02/lehre/TopologieWS18-19/top2_skriptWS18.pdf