@article{TRSPY_2024_326_a2,
author = {Djordje Barali\'c and Ale\v{s} Vavpeti\v{c} and Aleksandar Vu\v{c}i\'c},
title = {Mod $p$ {Buchstaber} {Invariant}},
journal = {Informatics and Automation},
pages = {26--42},
year = {2024},
volume = {326},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a2/}
}
Djordje Baralić; Aleš Vavpetič; Aleksandar Vučić. Mod $p$ Buchstaber Invariant. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 26-42. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a2/
[1] Abramenko P., Brown K.S., Buildings: Theory and applications, Grad. Texts Math., 248, Springer, New York, 2008 | DOI | MR | Zbl
[2] Audin M., Torus actions on symplectic manifolds, Prog. Math., 93, Birkhäuser, Basel, 2004 | DOI | MR | Zbl
[3] Ayzenberg A., The problem of Buchstaber number and its combinatorial aspects, E-print, 2010, arXiv: 1003.0637 [math.CO] | DOI
[4] Aizenberg A.A., “Svyaz invariantov Bukhshtabera i obobschennykh khromaticheskikh chisel”, Dalnevost. mat. zhurn., 11:2 (2011), 113–139 | MR
[5] Ayzenberg A., “Buchstaber invariant, minimal non-simplices and related”, Osaka J. Math., 53:2 (2016), 377–395 | MR | Zbl
[6] Baralić D., Grbić J., Vavpetič A., Vučić A., Universal simplicial complexes inspired by toric topology, E-print, 2017, arXiv: 1708.09565 [math.CO]
[7] Baralić Ð., Vavpetič A., Vučić A., “Universal complexes in toric topology”, Result. Math., 78:6 (2023), 218 | DOI | MR | Zbl
[8] Bosio F., Meersseman L., “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl
[9] V. M. Buchstaber and T. E. Panov, “Algebraic topology of manifolds defined by simple polytopes”, Russ. Math. Surv., 53:3 (1998), 623–625 | DOI | DOI | MR | Zbl
[10] V. M. Buchstaber and T. E. Panov, “Torus actions and combinatorics of polytopes”, Proc. Steklov Inst. Math., 225 (1999), 87–120 | MR | Zbl
[11] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Am. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl
[12] Cho H.W., “Periodicity and the values of the real Buchstaber invariants”, J. Math. Soc. Japan, 68:4 (2016), 1695–1723 | DOI | MR | Zbl
[13] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[14] De Longueville M., “The ring structure on the cohomology of coordinate subspace arrangements”, Math. Z., 233:3 (2000), 553–577 | DOI | MR | Zbl
[15] Erokhovets N., Criterion for the Buchstaber invariant of simplicial complexes to be equal to two, E-print, 2012, arXiv: 1212.3970 [math.AT] | DOI | MR
[16] N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Proc. Steklov Inst. Math., 286 (2014), 128–187 | DOI | DOI | MR | Zbl
[17] Fukukawa Y., Masuda M., “Buchstaber invariants of skeleta of a simplex”, Osaka J. Math., 48:2 (2011), 549–582 | MR | Zbl
[18] I. V. Izmest'ev, “Manifolds determined by simple polyhedra as configuration spaces of hinge mechanisms”, Russ. Math. Surv., 55:1 (2000), 176–177 | DOI | DOI | MR | Zbl
[19] I. V. Izmest'ev, “Free torus action on the manifold $\mathcal Z_P$ and the group of projectivities of a polytope $P$”, Russ. Math. Surv., 56:3 (2001), 582–583 | DOI | DOI | MR | Zbl
[20] Liu X., Feng H., Lü Z., Xia K., “Persistent Tor-algebra for protein–protein interaction analysis”, Brief. Bioinform., 24:2 (2023), bbad046 | DOI
[21] Shen Q., “Lower bound for Buchstaber invariants of real universal complexes”, Osaka J. Math., 60:3 (2023), 571–578 | MR | Zbl
[22] Sun Y., “Buchstaber invariants of universal complexes”, Chin. Ann. Math. Ser. B, 38:6 (2017), 1335–1344 | DOI | MR | Zbl
[23] Živković M., “Classification of small $(0,1)$ matrices”, Linear Algebra Appl., 414:1 (2006), 310–346 | DOI | MR | Zbl