@article{TRSPY_2024_326_a16,
author = {Yunhyung Cho and Naoki Fujita and Akihiro Higashitani and Eunjeong Lee},
title = {Newton{\textendash}Okounkov {Polytopes} of {Type} $A$ {Flag} {Varieties} of {Small} {Ranks} {Arising} from {Cluster} {Structures}},
journal = {Informatics and Automation},
pages = {382--397},
year = {2024},
volume = {326},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/}
}
TY - JOUR AU - Yunhyung Cho AU - Naoki Fujita AU - Akihiro Higashitani AU - Eunjeong Lee TI - Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures JO - Informatics and Automation PY - 2024 SP - 382 EP - 397 VL - 326 UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/ LA - ru ID - TRSPY_2024_326_a16 ER -
%0 Journal Article %A Yunhyung Cho %A Naoki Fujita %A Akihiro Higashitani %A Eunjeong Lee %T Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures %J Informatics and Automation %D 2024 %P 382-397 %V 326 %U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/ %G ru %F TRSPY_2024_326_a16
Yunhyung Cho; Naoki Fujita; Akihiro Higashitani; Eunjeong Lee. Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 382-397. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/
[1] Alexeev V., Brion M., “Toric degenerations of spherical varieties”, Sel. math. New Ser., 10:4 (2004), 453–478 | DOI | MR | Zbl
[2] Anderson D., “Okounkov bodies and toric degenerations”, Math. Ann., 356:3 (2013), 1183–1202 | DOI | MR | Zbl
[3] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III: Upper bounds and double Bruhat cells”, Duke Math. J., 126:1 (2005), 1–52 | DOI | MR | Zbl
[4] Berenstein A., Zelevinsky A., “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. math., 143:1 (2001), 77–128 | DOI | MR | Zbl
[5] Brion M., “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI | MR | Zbl
[6] Caldero P., “Toric degenerations of Schubert varieties”, Transform. Groups, 7:1 (2002), 51–60 | DOI | MR | Zbl
[7] Ceballos C., Santos F., Ziegler G.M., “Many non-equivalent realizations of the associahedron”, Combinatorica, 35:5 (2015), 513–551 | DOI | MR | Zbl
[8] Chapoton F., Fomin S., Zelevinsky A., “Polytopal realizations of generalized associahedra”, Can. Math. Bull., 45:4 (2002), 537–566 | DOI | MR | Zbl
[9] Cho Y., Kim Y., Lee E., Park K.-D., “On the combinatorics of string polytopes”, J. Comb. Theory. Ser. A, 184 (2021), 105508 | DOI | MR | Zbl
[10] Fang X., Fourier G., Littelmann P., “On toric degenerations of flag varieties”, Representation theory—Current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2017, 187–232 | DOI | MR | Zbl
[11] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Am. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl
[12] Fujita N., Naito S., “Newton–Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases”, Math. Z., 285:1–2 (2017), 325–352 | DOI | MR | Zbl
[13] Fujita N., Oya H., Newton–Okounkov polytopes of Schubert varieties arising from cluster structures, E-print, 2023, arXiv: 2002.09912v2 [math.RT] | DOI
[14] Fulton W., Young tableaux: With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl
[15] Gleizer O., Postnikov A., “Littlewood–Richardson coefficients via Yang–Baxter equation”, Int. Math. Res. Not., 2000:14 (2000), 741–774 | DOI | MR | Zbl
[16] Harada M., Kaveh K., “Integrable systems, toric degenerations and Okounkov bodies”, Invent. math., 202:3 (2015), 927–985 | DOI | MR | Zbl
[17] Kaveh K., “Crystal bases and Newton–Okounkov bodies”, Duke Math. J., 164:13 (2015), 2461–2506 | DOI | MR | Zbl
[18] Kaveh K., Khovanskii A.G., “Algebraic equations and convex bodies”, Perspectives in analysis, geometry, and topology, Prog. Math., 296, Birkhäuser, Basel, 2008, 263–282 ; Convex bodies and algebraic equations on affine varieties, E-print, arXiv: 0804.4095v1 [math.AG] | DOI | MR | DOI
[19] Kaveh K., Khovanskii A.G., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | MR | Zbl
[20] Lazarsfeld R., Mustaţă M., “Convex bodies associated to linear series”, Ann. sci. Éc. norm. supér. Sér. 4, 42:5 (2009), 783–835 | DOI | MR | Zbl
[21] Littelmann P., “Cones, crystals, and patterns”, Transform. Groups, 3:2 (1998), 145–179 | DOI | MR | Zbl
[22] Nakashima T., “Polyhedral realizations of crystal bases for integrable highest weight modules”, J. Algebra, 219:2 (1999), 571–597 | DOI | MR | Zbl
[23] Nakashima T., Zelevinsky A., “Polyhedral realizations of crystal bases for quantized Kac–Moody algebras”, Adv. Math., 131:1 (1997), 253–278 | DOI | MR | Zbl
[24] Tits J., “Le problème des mots dans les groupes de Coxeter”, Symposia Mathematica, v. 1, Rome, Teoria Gruppi, 1967; Teoria Continui Polari, 1968, Academic Press, London, 1969, 175–185 | DOI | MR