Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 382-397 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A flag variety is a smooth projective homogeneous variety. In this paper, we study Newton–Okounkov polytopes of the flag variety $\mathrm {Fl}(\mathbb C^4)$ arising from its cluster structure. More precisely, we present defining inequalities of such Newton–Okounkov polytopes of $\mathrm {Fl}(\mathbb C^4)$. Moreover, we classify these polytopes, establishing their equivalence under unimodular transformations.
Keywords: flag varieties, Newton–Okounkov bodies, cluster algebras, toric varieties.
@article{TRSPY_2024_326_a16,
     author = {Yunhyung Cho and Naoki Fujita and Akihiro Higashitani and Eunjeong Lee},
     title = {Newton{\textendash}Okounkov {Polytopes} of {Type} $A$ {Flag} {Varieties} of {Small} {Ranks} {Arising} from {Cluster} {Structures}},
     journal = {Informatics and Automation},
     pages = {382--397},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/}
}
TY  - JOUR
AU  - Yunhyung Cho
AU  - Naoki Fujita
AU  - Akihiro Higashitani
AU  - Eunjeong Lee
TI  - Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures
JO  - Informatics and Automation
PY  - 2024
SP  - 382
EP  - 397
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/
LA  - ru
ID  - TRSPY_2024_326_a16
ER  - 
%0 Journal Article
%A Yunhyung Cho
%A Naoki Fujita
%A Akihiro Higashitani
%A Eunjeong Lee
%T Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures
%J Informatics and Automation
%D 2024
%P 382-397
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/
%G ru
%F TRSPY_2024_326_a16
Yunhyung Cho; Naoki Fujita; Akihiro Higashitani; Eunjeong Lee. Newton–Okounkov Polytopes of Type $A$ Flag Varieties of Small Ranks Arising from Cluster Structures. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 382-397. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a16/

[1] Alexeev V., Brion M., “Toric degenerations of spherical varieties”, Sel. math. New Ser., 10:4 (2004), 453–478 | DOI | MR | Zbl

[2] Anderson D., “Okounkov bodies and toric degenerations”, Math. Ann., 356:3 (2013), 1183–1202 | DOI | MR | Zbl

[3] Berenstein A., Fomin S., Zelevinsky A., “Cluster algebras. III: Upper bounds and double Bruhat cells”, Duke Math. J., 126:1 (2005), 1–52 | DOI | MR | Zbl

[4] Berenstein A., Zelevinsky A., “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. math., 143:1 (2001), 77–128 | DOI | MR | Zbl

[5] Brion M., “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI | MR | Zbl

[6] Caldero P., “Toric degenerations of Schubert varieties”, Transform. Groups, 7:1 (2002), 51–60 | DOI | MR | Zbl

[7] Ceballos C., Santos F., Ziegler G.M., “Many non-equivalent realizations of the associahedron”, Combinatorica, 35:5 (2015), 513–551 | DOI | MR | Zbl

[8] Chapoton F., Fomin S., Zelevinsky A., “Polytopal realizations of generalized associahedra”, Can. Math. Bull., 45:4 (2002), 537–566 | DOI | MR | Zbl

[9] Cho Y., Kim Y., Lee E., Park K.-D., “On the combinatorics of string polytopes”, J. Comb. Theory. Ser. A, 184 (2021), 105508 | DOI | MR | Zbl

[10] Fang X., Fourier G., Littelmann P., “On toric degenerations of flag varieties”, Representation theory—Current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2017, 187–232 | DOI | MR | Zbl

[11] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Am. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl

[12] Fujita N., Naito S., “Newton–Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases”, Math. Z., 285:1–2 (2017), 325–352 | DOI | MR | Zbl

[13] Fujita N., Oya H., Newton–Okounkov polytopes of Schubert varieties arising from cluster structures, E-print, 2023, arXiv: 2002.09912v2 [math.RT] | DOI

[14] Fulton W., Young tableaux: With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl

[15] Gleizer O., Postnikov A., “Littlewood–Richardson coefficients via Yang–Baxter equation”, Int. Math. Res. Not., 2000:14 (2000), 741–774 | DOI | MR | Zbl

[16] Harada M., Kaveh K., “Integrable systems, toric degenerations and Okounkov bodies”, Invent. math., 202:3 (2015), 927–985 | DOI | MR | Zbl

[17] Kaveh K., “Crystal bases and Newton–Okounkov bodies”, Duke Math. J., 164:13 (2015), 2461–2506 | DOI | MR | Zbl

[18] Kaveh K., Khovanskii A.G., “Algebraic equations and convex bodies”, Perspectives in analysis, geometry, and topology, Prog. Math., 296, Birkhäuser, Basel, 2008, 263–282 ; Convex bodies and algebraic equations on affine varieties, E-print, arXiv: 0804.4095v1 [math.AG] | DOI | MR | DOI

[19] Kaveh K., Khovanskii A.G., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | MR | Zbl

[20] Lazarsfeld R., Mustaţă M., “Convex bodies associated to linear series”, Ann. sci. Éc. norm. supér. Sér. 4, 42:5 (2009), 783–835 | DOI | MR | Zbl

[21] Littelmann P., “Cones, crystals, and patterns”, Transform. Groups, 3:2 (1998), 145–179 | DOI | MR | Zbl

[22] Nakashima T., “Polyhedral realizations of crystal bases for integrable highest weight modules”, J. Algebra, 219:2 (1999), 571–597 | DOI | MR | Zbl

[23] Nakashima T., Zelevinsky A., “Polyhedral realizations of crystal bases for quantized Kac–Moody algebras”, Adv. Math., 131:1 (1997), 253–278 | DOI | MR | Zbl

[24] Tits J., “Le problème des mots dans les groupes de Coxeter”, Symposia Mathematica, v. 1, Rome, Teoria Gruppi, 1967; Teoria Continui Polari, 1968, Academic Press, London, 1969, 175–185 | DOI | MR