Keywords: deformed double confluent Heun equation, isomonodromicity.
@article{TRSPY_2024_326_a14,
author = {S. I. Tertichniy},
title = {On the {Monodromy-Preserving} {Deformation} of a {Double} {Confluent} {Heun} {Equation}},
journal = {Informatics and Automation},
pages = {330--367},
year = {2024},
volume = {326},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a14/}
}
S. I. Tertichniy. On the Monodromy-Preserving Deformation of a Double Confluent Heun Equation. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 330-367. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a14/
[1] Bibilo Y., Glutsyuk A.A., “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation”, Nonlinearity, 35:10 (2022), 5427–5480 | DOI | MR | Zbl
[2] Clarkson P.A., “Painlevè equations—nonlinear special functions”, J. Comput. Appl. Math., 153:1–2 (2003), 127–140 | DOI | MR | Zbl
[3] Dereziński J., Ishkhanyan A., Latosiński A., “From Heun class equations to Painlevé equations”, SIGMA. Symmetry, Integrability Geom. Methods Appl., 17 (2021), 056 | DOI | MR | Zbl
[4] Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, W. de Gruyter, Berlin, 2002 | DOI | MR
[5] Handbook of mathematical functions with formulas, graphs, and mathematical tables, NBS Appl. Math. Ser., 55, ed. by M. Abramowitz, I.A. Stegun, Natl. Bureau Stand., Washington, 1964 | MR
[6] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I: General theory and $\tau $-function”, Physica D, 2:2 (1981), 306–352 | DOI | MR | Zbl
[7] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Physica D, 2:3 (1981), 407–448 | DOI | MR | Zbl
[8] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Physica D, 4:1 (1981), 26–46 | DOI | MR | Zbl
[9] McCumber D.E., “Effect of ac impedance on dc voltage–current characteristics of superconductor weak-link junctions”, J. Appl. Phys., 39:7 (1968), 3113–3118 | DOI
[10] Renne M.J., Polder D., “Some analytical results for the resistively shunted Josephson junction”, Rev. phys. appl., 9:1 (1974), 25–28 | DOI
[11] Schmidt D., Wolf G., “Double confluent Heun equation”, Heun's differential equations, Part C, ed. by A. Ronveaux, Oxford Univ. Press, Oxford, 1995, 129–188
[12] V. V. Schmidt, Introduction to the Physics of Superconductors, 2nd ed., MTsNMO, Moscow, 2000 | DOI | Zbl
[13] The Physics of Superconductors: Introduction to Fundamentals and Applications, Springer, Berlin, 1997 | DOI | Zbl
[14] Shapiro S., Janus A.R., Holly S., “Effect of microwaves on Josephson currents in superconducting tunneling”, Rev. Mod. Phys., 36:1 (1964), 223–225 | DOI
[15] Slavyanov S.Yu., “Painlevé equations as classical analogues of Heun equations”, J. Phys. A: Math. Gen., 29:22 (1996), 7329–7335 | DOI | MR | Zbl
[16] S. Yu. Slavyanov, “Structural theory of special functions”, Theor. Math. Phys., 119:1 (1999), 393–406 | DOI | DOI | MR | Zbl
[17] S. Yu. Slavyanov, “Isomonodromic deformations of Heun and Painlevé equations”, Theor. Math. Phys., 123:3 (2000), 744–753 | DOI | DOI | MR | Zbl
[18] Slavyanov S., Stesik O., “Antiquantization as a specific way from the Statistical physics to the Regular physics”, Physica A, 521 (2019), 512–518 | DOI | MR | Zbl
[19] Stewart W.C., “Current–voltage characteristic of Josephson junction”, Appl. Phis. Lett., 12:8 (1968), 277–280 | DOI
[20] Tertychniy S.I., Long-term behavior of solutions of the equation $\dot \phi +\sin \phi =f$ with periodic $f$ and the modeling of dynamics of overdamped Josephson junctions, E-print, 2005, arXiv: math-ph/0512058 | DOI