Stellar Subdivision and Polyhedral Products
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 314-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the homotopy theory of polyhedral products arising from the operation of stellar subdivision on simplicial complexes. In the special case of polyhedral products formed from pairs $(S^{n_i},*)$ where the $S^{n_i}$'s are simply connected spheres, information is deduced about the growth of the rational and torsion homotopy groups.
Mots-clés : homotopy type
Keywords: polyhedral product, simplicial complex, stellar subdivision.
@article{TRSPY_2024_326_a13,
     author = {Stephen Theriault},
     title = {Stellar {Subdivision} and {Polyhedral} {Products}},
     journal = {Informatics and Automation},
     pages = {314--329},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a13/}
}
TY  - JOUR
AU  - Stephen Theriault
TI  - Stellar Subdivision and Polyhedral Products
JO  - Informatics and Automation
PY  - 2024
SP  - 314
EP  - 329
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a13/
LA  - ru
ID  - TRSPY_2024_326_a13
ER  - 
%0 Journal Article
%A Stephen Theriault
%T Stellar Subdivision and Polyhedral Products
%J Informatics and Automation
%D 2024
%P 314-329
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a13/
%G ru
%F TRSPY_2024_326_a13
Stephen Theriault. Stellar Subdivision and Polyhedral Products. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 314-329. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a13/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | MR | Zbl

[2] Bahri A., Bendersky M., Cohen F.R., Gitler S., “Cup-products for the polyhedral product functor”, Math. Proc. Cambridge Philos. Soc., 153:3 (2012), 457–469 | DOI | MR | Zbl

[3] Boyde G., “$p$-Hyperbolicity of homotopy groups via $K$-theory”, Math. Z., 301:1 (2022), 977–1009 | DOI | MR | Zbl

[4] Boyde G., “$\mathbb {Z}/p^r$-hyperbolicity via homology”, Isr. J. Math., 260:1 (2024), 141–193 ; arXiv: 2106.03516 [math.AT] | DOI | MR | Zbl | DOI

[5] Cohen F.R., Moore J.C., Neisendorfer J.A., “Torsion in homotopy groups”, Ann. Math. Ser. 2, 109:1 (1979), 121–168 | DOI | MR | Zbl

[6] Cohen F.R., Moore J.C., Neisendorfer J.A., “The double suspension and exponents of the homotopy groups of spheres”, Ann. Math. Ser. 2, 110:3 (1979), 549–565 | DOI | MR | Zbl

[7] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[8] Félix Y., Halperin S., Thomas J.-C., “The homotopy Lie algebra for finite complexes”, Publ. math. Inst. hautes étud. sci., 56 (1982), 179–202 | DOI | MR | Zbl

[9] Félix Y., Tanré D., “Rational homotopy of the polyhedral product functor”, Proc. Am. Math. Soc., 137:3 (2009), 891–898 | DOI | MR | Zbl

[10] Ganea T., “A generalization of the homology and homotopy suspension”, Comment. math. Helv., 39 (1965), 295–322 | DOI | MR | Zbl

[11] Grbić J., Theriault S., “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396 | DOI | MR | Zbl

[12] Grbić J., Theriault S., “The homotopy type of the polyhedral product for shifted complexes”, Adv. Math., 245 (2013), 690–715 | DOI | MR | Zbl

[13] Hao Y., Sun Q., Theriault S., “Moore's conjecture for polyhedral products”, Math. Proc. Cambridge Philos. Soc., 167:1 (2019), 23–33 | DOI | MR | Zbl

[14] Huang R., Wu J., “Exponential growth of homotopy groups of suspended finite complexes”, Math. Z., 295:3–4 (2020), 1301–1321 | DOI | MR | Zbl

[15] Iriye K., Kishimoto D., “Fat-wedge filtration and decomposition of polyhedral products”, Kyoto J. Math., 59:1 (2019), 1–51 | DOI | MR | Zbl

[16] Mather M., “Pull-backs in homotopy theory”, Can. J. Math., 28:2 (1976), 225–263 | DOI | MR | Zbl

[17] Neisendorfer J.A., Selick P.S., “Some examples of spaces with or without exponents”, Current trends in algebraic topology: Semin. London/Ont., 1981, CMS Conf. Proc., 2, Part 1, Am. Math. Soc., Providence, RI, 1982, 343–357 | MR

[18] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | DOI | MR | Zbl

[19] Porter G.J., “The homotopy groups of wedges of suspensions”, Am. J. Math., 88:3 (1966), 655–663 | DOI | MR | Zbl

[20] Selick P., “2-primary exponents for the homotopy groups of spheres”, Topology, 23:1 (1984), 97–99 | DOI | MR | Zbl

[21] S. Theriault, “Polyhedral products for connected sums of simplicial complexes”, Proc. Steklov Inst. Math., 317 (2022), 151–160 | DOI | DOI | MR | Zbl

[22] Theriault S., “Polyhedral products for wheel graphs and their generalizations”, Toric topology and polyhedral products, Fields Inst. Commun., 89, Springer, Cham, 2024, 295–311 | DOI | MR | Zbl