On a Family of Multivalued Groups
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 311-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a family of $(2k+1)$-valued groups ($k\ge 1$) of three elements, we prove that a group from this family is a coset group if and only if $4k+3$ is a prime power. We also discuss the relation between three-element coset multivalued groups and finite groups of rank $3$.
Keywords: multivalued group, coset group, group of rank 3.
@article{TRSPY_2024_326_a12,
     author = {I. N. Ponomarenko},
     title = {On a {Family} of {Multivalued} {Groups}},
     journal = {Informatics and Automation},
     pages = {311--313},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a12/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
TI  - On a Family of Multivalued Groups
JO  - Informatics and Automation
PY  - 2024
SP  - 311
EP  - 313
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a12/
LA  - ru
ID  - TRSPY_2024_326_a12
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%T On a Family of Multivalued Groups
%J Informatics and Automation
%D 2024
%P 311-313
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a12/
%G ru
%F TRSPY_2024_326_a12
I. N. Ponomarenko. On a Family of Multivalued Groups. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 311-313. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a12/

[1] Berggren J.L., “An algebraic characterization of finite symmetric tournaments”, Bull. Aust. Math. Soc., 6:1 (1972), 53–59 | DOI | MR | Zbl

[2] Buchstaber V.M., “$n$-Valued groups: Theory and applications”, Moscow Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, A. M. Vershik, S. A. Evdokimov, and I. N. Ponomarenko, “Combinatorial algebras and multivalued involutive groups”, Funct. Anal. Appl., 30:3 (1996), 158–162 | DOI | DOI | MR | Zbl

[4] Chen G., Ponomarenko I., Coherent configurations, Cent. China Norm. Univ. Press, Wuhan, 2019 http://www.pdmi.ras.ru/~inp/ccNOTES.pdf

[5] Liebeck M.W., Saxl J., “The finite primitive permutation groups of rank three”, Bull. London Math. Soc., 18:2 (1986), 165–172 | DOI | MR | Zbl

[6] Wielandt H., Finite permutation groups, Academic Press, New York, 1964 | MR | Zbl