Polyhedral Products, Graph Products, and $p$-Central Series
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 293-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We relate polyhedral products of topological spaces to graph products of groups. The loop homology algebras of polyhedral products are identified with the universal enveloping algebras of the Lie algebras associated with central series of graph products. As an application, we describe the restricted Lie algebra associated with the lower $2$-central series of a right-angled Coxeter group and identify its universal enveloping algebra with the loop homology of the Davis–Januszkiewicz space.
Keywords: polyhedral product, graph product, right-angled Coxeter group, central series, restricted Lie algebra, loop homology.
@article{TRSPY_2024_326_a11,
     author = {Taras E. Panov and Temurbek A. Rahmatullaev},
     title = {Polyhedral {Products,} {Graph} {Products,} and $p${-Central} {Series}},
     journal = {Informatics and Automation},
     pages = {293--310},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a11/}
}
TY  - JOUR
AU  - Taras E. Panov
AU  - Temurbek A. Rahmatullaev
TI  - Polyhedral Products, Graph Products, and $p$-Central Series
JO  - Informatics and Automation
PY  - 2024
SP  - 293
EP  - 310
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a11/
LA  - ru
ID  - TRSPY_2024_326_a11
ER  - 
%0 Journal Article
%A Taras E. Panov
%A Temurbek A. Rahmatullaev
%T Polyhedral Products, Graph Products, and $p$-Central Series
%J Informatics and Automation
%D 2024
%P 293-310
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a11/
%G ru
%F TRSPY_2024_326_a11
Taras E. Panov; Temurbek A. Rahmatullaev. Polyhedral Products, Graph Products, and $p$-Central Series. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 293-310. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a11/

[1] S. A. Abramyan and T. E. Panov, “Higher Whitehead products in moment–angle complexes and substitution of simplicial complexes”, Proc. Steklov Inst. Math., 305 (2019), 1–21 | DOI | DOI | MR | Zbl

[2] Bahri A., Bendersky M., Cohen F.R., “Polyhedral products and features of their homotopy theory”, Handbook of homotopy theory, CRC Press, Boca Raton, FL, 2020, 103–144 | DOI | MR | Zbl

[3] Yu. Bakhturin, Identical Relations in Lie Algebras, De Gruyter, Berlin, 2021 | MR | MR | Zbl

[4] Bartholdi L., Härer H., Schick T., “Right angled Artin groups and partial commutation, old and new”, Enseign. math. Sér. 2, 66:1–2 (2020), 33–61 | DOI | MR | Zbl

[5] Bubenik P., Gold L.H., “Graph products of spheres, associative graded algebras and Hilbert series”, Math. Z., 268:3–4 (2011), 821–836 | DOI | MR | Zbl

[6] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[7] Cai L., “On the graph products of simplicial groups and connected Hopf algebras”, J. Algebra, 647 (2024), 99–143 ; arXiv: 2306.16625 [math.AT] | DOI | MR | Zbl | DOI

[8] Dobrinskaya N., Loops on polyhedral products and diagonal arrangements, E-print, 2009, arXiv: 0901.2871 [math.AT] | DOI | Zbl

[9] Duchamp G., Krob D., “The lower central series of the free partially commutative group”, Semigroup Forum, 45:3 (1992), 385–394 | DOI | MR | Zbl

[10] Grbić J., Panov T., Theriault S., Wu J., “The homotopy types of moment–angle complexes for flag complexes”, Trans. Am. Math. Soc., 368:9 (2016), 6663–6682 | DOI | MR | Zbl

[11] Grbić J., Simmons G., Ilyasova M., Panov T., “One-relator groups and algebras related to polyhedral products”, Proc. R. Soc. Edinburgh, Sect. A: Math., 152:1 (2022), 128–147 ; Dzhekobson N., Algebry Li, Mir, M., 1964 | DOI | MR | Zbl

[12] N. Jacobson, Lie Algebras, 2nd ed., Dover Publ., New York, 1979 | MR

[13] Kim K.H., Roush F.W., “Homology of certain algebras defined by graphs”, J. Pure Appl. Algebra, 17:2 (1980), 179–186 | DOI | MR | Zbl

[14] Lazard M., “Sur les groupes nilpotents et les anneaux de Lie”, Ann. sci. Éc. norm. supér. Ser. 3, 71:2 (1954), 101–190 ; Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp: Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | DOI | MR | Zbl

[15] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, 2nd rev. ed., Dover Publ., New York, 1976 | MR | Zbl

[16] Milnor J.W., Moore J.C., “On the structure of Hopf algebras”, Ann. Math. Ser. 2, 81:2 (1965), 211–264 | DOI | MR | Zbl

[17] Panov T.E., Ray N., “Categorical aspects of toric topology”, Toric topology: Int. Conf., Osaka, 2006, Contemp. Math., 460, ed. by M. Harada et al., Am. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[18] Panov T., Ray N., Vogt R., “Colimits, Stanley–Reisner algebras, and loop spaces”, Categorical decomposition techniques in algebraic topology: Proc. Int. Conf., Isle of Skye, 2001, Prog. Math., 215, Birkhäuser, Basel, 2004, 261–291 | DOI | MR | Zbl

[19] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | DOI | MR | Zbl

[20] Papadima S., Suciu A.I., “Algebraic invariants for right-angled Artin groups”, Math. Ann., 334:3 (2006), 533–555 | DOI | MR | Zbl

[21] Quillen D.G., “On the associated graded ring of a group ring”, J. Algebra, 10:4 (1968), 411–418 ; Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | DOI | MR | Zbl | MR

[22] J.-P. Serre, Lie Algebras and Lie Groups: 1964 lectures given at Harvard University, Lect. Notes Math., 1500, Springer, Berlin, 1992 | DOI | MR | MR | Zbl

[23] Ya. A. Veryovkin, “Graded components of the Lie algebra associated with the lower central series of a right-angled Coxeter group”, Proc. Steklov Inst. Math., 318 (2022), 26–37 | DOI | DOI | MR | Zbl

[24] Ya. A. Veryovkin and T. A. Rahmatullaev, “On consecutive factors of the lower central series of right-angled Coxeter groups”, Math. Notes, 116:1–2 (2024), 10–29 | DOI | DOI | MR | Zbl

[25] Wade R.D., “The lower central series of a right-angled Artin group”, Enseign. math. Sér. 2, 61:3–4 (2015), 343–371 | DOI | MR | Zbl

[26] Whitehead J.H.C., “On the asphericity of regions in a 3-sphere”, Fundam. math., 32:1 (1939), 149–166 | DOI | Zbl