Bier Spheres and Toric Topology
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 275-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the real and complex Buchstaber numbers of an arbitrary Bier sphere. In dimension two, we identify all the 13 different combinatorial types of Bier spheres and show that 12 of them are nerve complexes of nestohedra, while the remaining one is a nerve complex of a generalized permutohedron. As an application of our results, we construct a regular normal fan for each of those 13 Delzant polytopes, compute the cohomology rings of the corresponding nonsingular projective toric varieties, and examine the orientability of the corresponding small covers.
Keywords: Bier sphere, nestohedron, quasitoric manifold, small cover, Buchstaber number.
Mots-clés : Delzant polytope
@article{TRSPY_2024_326_a10,
     author = {Ivan Yu. Limonchenko and Matvey A. Sergeev},
     title = {Bier {Spheres} and {Toric} {Topology}},
     journal = {Informatics and Automation},
     pages = {275--292},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a10/}
}
TY  - JOUR
AU  - Ivan Yu. Limonchenko
AU  - Matvey A. Sergeev
TI  - Bier Spheres and Toric Topology
JO  - Informatics and Automation
PY  - 2024
SP  - 275
EP  - 292
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a10/
LA  - ru
ID  - TRSPY_2024_326_a10
ER  - 
%0 Journal Article
%A Ivan Yu. Limonchenko
%A Matvey A. Sergeev
%T Bier Spheres and Toric Topology
%J Informatics and Automation
%D 2024
%P 275-292
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a10/
%G ru
%F TRSPY_2024_326_a10
Ivan Yu. Limonchenko; Matvey A. Sergeev. Bier Spheres and Toric Topology. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 275-292. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a10/

[1] Ayzenberg A., The problem of Buchstaber number and its combinatorial aspects, E-print, 2010, arXiv: 1003.0637 [math.CO] | DOI

[2] Bier T., A remark on Alexander duality and the disjunct join, Preprint, 1992

[3] Björner A., Paffenholz A., Sjöstrand J., Ziegler G.M., “Bier spheres and posets”, Discrete Comput. Geom., 34:1 (2005), 71–86 | DOI | MR | Zbl

[4] V. M. Buchstaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, Univ. Lect. Ser., 24, Am. Math. Soc., Providence, RI, 2002 | DOI | MR | MR | Zbl

[5] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 ; arXiv: 1210.2368 [math.AT] | DOI | MR | Zbl | DOI

[6] V. M. Buchstaber and V. D. Volodin, “Sharp upper and lower bounds for nestohedra”, Izv. Math., 75:6 (2011), 1107–1133 | DOI | DOI | MR | Zbl

[7] V. I. Danilov, “The geometry of toric varieties”, Russ. Math. Surv., 33:2 (1978), 97–154 | DOI | MR | Zbl

[8] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[9] Delaunay C., “On hyperbolicity of toric real threefolds”, Int. Math. Res. Not., 2005:51 (2005), 3191–3201 | DOI | MR | Zbl

[10] Feichtner E.M., Sturmfels B., “Matroid polytopes, nested sets and Bergman fans”, Port. Math. (N.S.), 62:4 (2005), 437–468 | MR | Zbl

[11] Fenn A.G., On families of nestohedra, PhD thesis, Univ. Manchester, Manchester, 2010

[12] Fukukawa Y., Masuda M., “Buchstaber invariants of skeleta of a simplex”, Osaka J. Math., 48:2 (2011), 549–582 | MR | Zbl

[13] Jevtić F.D., Timotijević M., Živaljević R.T., “Polytopal Bier spheres and Kantorovich–Rubinstein polytopes of weighted cycles”, Discrete Comp. Geom., 65 (2021), 1275–1286 ; arXiv: 1812.00397 [math.MG] | DOI | MR | Zbl | DOI

[14] Jevtić F.D., Živaljević R.T., “Bier spheres of extremal volume and generalized permutohedra”, Appl. Anal. Discrete Math., 17:1 (2023), 101–119 ; arXiv: 2108.00618 [math.CO] | DOI | MR | Zbl | DOI

[15] I. Yu. Limonchenko, “Stanley–Reisner rings of generalized truncation polytopes and their moment–angle manifolds”, Proc. Steklov Inst. Math., 286 (2014), 188–197 | DOI | DOI | MR | Zbl

[16] De Longueville M., “Bier spheres and barycentric subdivision”, J. Comb. Theory. Ser. A, 105:2 (2004), 355–357 | DOI | MR | Zbl

[17] Matoušek J., Using the Borsuk–Ulam theorem: Lectures on topological methods in combinatorics and geometry, Universitext, Springer, Berlin, 2003 | MR | Zbl

[18] Murai S., “Spheres arising from multicomplexes”, J. Comb. Theory, Ser. A, 118:8 (2011), 2167–2184 ; arXiv: 1002.1211 [math.CO] | DOI | MR | Zbl | DOI

[19] Nakayama H., Nishimura Y., “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl

[20] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | DOI | MR | Zbl

[21] Postnikov A., Reiner V., Williams L., “Faces of generalized permutohedra”, Doc. math., 13 (2008), 207–273 | DOI | MR | Zbl

[22] Timotijević M., Živaljević R.T., Jevtić F.D., Polytopality of simple games, E-print, 2023, arXiv: 2309.14848 [math.CO] | DOI