Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera
Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the ideal in the complex cobordism ring $\mathbf {MU}^*$ generated by the polynomial generators $S=(x_1,x_k,\,k\geq 3)$ of the $c_1$-spherical cobordism ring $W^*$, viewed as elements in $\mathbf {MU}^*$ by the forgetful map, is prime. Using the Baas–Sullivan theory of cobordism with singularities, we define a commutative complex oriented cohomology theory $\mathbf {MU}^*_S(-)$, complex cobordism modulo $c_1$-spherical cobordism, with the coefficient ring $\mathbf {MU}^*/S$. Then any $\Sigma \subseteq S$ is also regular in $\mathbf {MU}^*$ and therefore gives a multiplicative complex oriented cohomology theory $\mathbf {MU}^*_{\Sigma }(-)$. The generators of $W^*[1/2]$ can be specified in such a way that for $\Sigma =(x_k,\,k\geq 3)$ the corresponding cohomology is identical to the Abel cohomology previously constructed by Ph. Busato. Another example corresponding to $\Sigma =(x_k,\,k\geq 5)$ gives the coefficient ring of the universal Buchstaber formal group law after being tensored by $\mathbb Z[1/2]$, i.e., is identical to the scalar ring of the Krichever–Höhn complex elliptic genus.
Keywords: complex bordism, formal group law
Mots-clés : SU-bordism, complex elliptic genus.
@article{TRSPY_2024_326_a1,
     author = {Malkhaz Bakuradze},
     title = {Complex {Cobordism} {Modulo} $c_1${-Spherical} {Cobordism} and {Related} {Genera}},
     journal = {Informatics and Automation},
     pages = {15--25},
     year = {2024},
     volume = {326},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a1/}
}
TY  - JOUR
AU  - Malkhaz Bakuradze
TI  - Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera
JO  - Informatics and Automation
PY  - 2024
SP  - 15
EP  - 25
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a1/
LA  - ru
ID  - TRSPY_2024_326_a1
ER  - 
%0 Journal Article
%A Malkhaz Bakuradze
%T Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera
%J Informatics and Automation
%D 2024
%P 15-25
%V 326
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a1/
%G ru
%F TRSPY_2024_326_a1
Malkhaz Bakuradze. Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 15-25. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a1/

[1] Abel N.H., “Méthode générale pour trouver des fonctions d'une seule quantité variable, lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables”, Mag. Naturvid., 1 (1823), 1; Oeuvres complètes, Grøndahl Son, Christiania, 1881, 1–10

[2] Baas N.A., “On bordism theory of manifolds with singularities”, Math. Scand., 33 (1973), 279–302 | DOI | MR

[3] M. Bakuradze, “The formal group laws of Buchstaber, Krichever, and Nadiradze coincide”, Russ. Math. Surv., 68:3 (2013), 571–573 | DOI | DOI | MR | Zbl

[4] M. Bakuradze, “On the Buchstaber formal group law and some related genera”, Proc. Steklov Inst. Math., 286 (2014), 1–15 | DOI | DOI | MR | Zbl

[5] Bakuradze M., “Computing the Krichever genus”, J. Homotopy Relat. Struct., 9:1 (2014), 85–93 | DOI | MR | Zbl

[6] M. Bakuradze, “Cohomological realization of the Buchstaber formal group law”, Russ. Math. Surv., 77:5 (2022), 949–951 | DOI | DOI | MR | MR | Zbl

[7] Bakuradze M., “Polynomial generators of $\mathbf {MSU}^*[1/2]$ related to classifying maps of certain formal group laws”, Homology Homotopy Appl., 26:1 (2024), 1–14 | DOI | MR | Zbl

[8] M. Bakuradze and V. V. Vershinin, “On addition theorems related to elliptic integrals”, Proc. Steklov Inst. Math., 305 (2019), 22–32 | DOI | DOI | MR | Zbl

[9] Bruns W., Herzog J., Cohen–Macaulay rings, Cambridge Stud. Adv. Math., 39, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[10] Bukhshtaber V.M., “Proektory v unitarnykh kobordizmakh, svyazannye s $SU$-teoriei”, UMN, 27:6 (1972), 231–232 | MR | Zbl

[11] V. M. Bukhshtaber and A. N. Kholodov, “Formal groups, functional equations, and generalized cohomology theories”, Math. USSR, Sb., 69:1 (1991), 77–97 | DOI | MR | Zbl | Zbl

[12] V. M. Buchstaber and E. Yu. Netay, “$\mathbb C P(2)$-multiplicative Hirzebruch genera and elliptic cohomology”, Russ. Math. Surv., 69:4 (2014), 757–759 | DOI | DOI | MR | Zbl

[13] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[14] V. M. Buchstaber and A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | DOI | MR | Zbl

[15] Busato Ph., “Realization of Abel's universal formal group law”, Math. Z., 239:3 (2002), 527–561 | DOI | MR | Zbl

[16] Conner P.E., Floyd E.E., Torsion in SU-bordism, Mem. AMS, 60, Am. Math. Soc., Providence, RI, 1966 | DOI | MR | Zbl

[17] Höhn G., Komplexe elliptische Geschlechter und $S^1$-äquivariante Kobordismustheorie, E-print, 2004, arXiv: math/0405232 [math.AT] | DOI

[18] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR | Zbl

[19] Kummer E.E., “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, J. reine angew. Math., 44 (1852), 93–146 | DOI | MR

[20] I. Yu. Limonchenko, T. E. Panov, and G. S. Chernykh, “$SU$-bordism: Structure results and geometric representatives”, Russ. Math. Surv., 74:3 (2019), 461–524 | DOI | DOI | MR | Zbl

[21] O. K. Mironov, “Multiplications in cobordism theories with singularities, and Steenrod–tom Dieck operations”, Math. USSR, Izv., 13:1 (1979), 89–106 | DOI | MR | Zbl | Zbl

[22] Novikov S.P., “Gomotopicheskie svoistva kompleksov Toma”, Mat. sb., 57:4 (1962), 407–442 | Zbl

[23] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl

[24] T. E. Panov and G. S. Chernykh, “$SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory”, Izv. Math., 87:4 (2023), 768–797 | DOI | DOI | MR | Zbl

[25] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Am. Math. Soc., 75 (1969), 1293–1298 | DOI | MR | Zbl

[26] Stong R.E., Notes on cobordism theory, Princeton Univ. Press, Princeton, NJ, 1968 | DOI | MR | Zbl

[27] Totaro B., “Chern numbers for singular varieties and elliptic homology”, Ann. Math. Ser. 2, 151:2 (2000), 757–791 | DOI | MR | Zbl