@article{TRSPY_2024_326_a0,
author = {Anton A. Ayzenberg and Dmitry V. Gugnin},
title = {On {Actions} of {Tori} and {Quaternionic} {Tori} on {Products} of {Spheres}},
journal = {Informatics and Automation},
pages = {5--14},
year = {2024},
volume = {326},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a0/}
}
Anton A. Ayzenberg; Dmitry V. Gugnin. On Actions of Tori and Quaternionic Tori on Products of Spheres. Informatics and Automation, Topology, Geometry, Combinatorics, and Mathematical Physics, Tome 326 (2024), pp. 5-14. http://geodesic.mathdoc.fr/item/TRSPY_2024_326_a0/
[1] V. I. Arnold, “Relatives of the quotient of the complex projective plane by the complex conjugation”, Proc. Steklov Inst. Math., 224 (1999), 46–56 | MR | Zbl
[2] Atiyah M., Berndt J., “Projective planes, Severi varieties and spheres”, Surveys in differential geometry, Harvard Univ., 2002, v. VIII, Surv. Differ. Geom., 8, Lectures on geometry and topology held in honor of Calabi, Lawson, Siu, and Uhlenbeck, International Press, Somerville, MA, 2003, 1–27 | DOI | MR | Zbl
[3] A. A. Ayzenberg, “Torus actions of complexity 1 and their local properties”, Proc. Steklov Inst. Math., 302 (2018), 16–32 | DOI | DOI | MR | Zbl
[4] Ayzenberg A., “Torus action on quaternionic projective plane and related spaces”, Arnold Math. J., 7:2 (2021), 243–266 | DOI | MR | Zbl
[5] Ayzenberg A., Masuda M., “Orbit spaces of equivariantly formal torus actions of complexity one”, Transform. Groups, 2023 | DOI | Zbl
[6] G. E. Bredon, Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Academic Press, New York, 1972 | MR | Zbl
[7] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Am. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[8] Gorchakov V., Equivariantly formal 2-torus actions of complexity one, E-print, 2023, arXiv: 2304.00936 [math.AT] | DOI
[9] D. V. Gugnin, “Branched coverings of manifolds and $nH$-spaces”, Funct. Anal. Appl., 53:2 (2019), 133–136 | DOI | DOI | MR | Zbl
[10] D. V. Gugnin, “On nonfree actions of commuting involutions on manifolds”, Math. Notes, 113:5–6 (2023), 770–775 | DOI | DOI | MR | Zbl
[11] M. A. Mikhaĭlova, “On the quotient space modulo the action of a finite group generated by pseudoreflections”, Math. USSR, Izv., 24:1 (1985), 99–119 | DOI | MR | Zbl | Zbl
[12] Neofytidis C., Non-zero degree maps between manifolds and groups presentable by products, PhD thesis, Ludwig Maximilian Univ., Munich, 2014 https://edoc.ub.uni-muenchen.de/17204/1/Neofytidis\textunderscore Christoforos.pdf
[13] Neofytidis C., “Branched coverings of simply connected manifolds”, Topology Appl., 178 (2014), 360–371 | DOI | MR | Zbl
[14] O. G. Styrt, “On the orbit space of a compact linear Lie group with commutative connected component”, Trans. Moscow Math. Soc., 2009 (2009), 171–206 | DOI | MR | Zbl