On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 175-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the Novikov problem of describing the geometry of level lines of quasiperiodic functions on the plane. We consider here the most general case, when the number of quasiperiods of a function is not limited. The main subject of investigation is the occurrence of either open level lines or closed level lines of arbitrarily large size, which play an important role in many dynamical systems related to the general Novikov problem. As can be shown, the results obtained here for quasiperiodic functions on the plane can be generalized to the multidimensional case. In this case, we are dealing with a generalized Novikov problem, namely, the problem of describing level surfaces of quasiperiodic functions in a space of arbitrary dimension. Like the Novikov problem on the plane, the generalized Novikov problem plays an important role in many systems containing quasiperiodic modulations.
Keywords: theory of quasiperiodic functions, level manifolds, Novikov problem.
@article{TRSPY_2024_325_a8,
     author = {A. Ya. Maltsev},
     title = {On the {Novikov} {Problem} with a {Large} {Number} of {Quasiperiods} and {Its} {Generalizations}},
     journal = {Informatics and Automation},
     pages = {175--189},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a8/}
}
TY  - JOUR
AU  - A. Ya. Maltsev
TI  - On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations
JO  - Informatics and Automation
PY  - 2024
SP  - 175
EP  - 189
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a8/
LA  - ru
ID  - TRSPY_2024_325_a8
ER  - 
%0 Journal Article
%A A. Ya. Maltsev
%T On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations
%J Informatics and Automation
%D 2024
%P 175-189
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a8/
%G ru
%F TRSPY_2024_325_a8
A. Ya. Maltsev. On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 175-189. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a8/

[1] Avila A., Hubert P., Skripchenko A., “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. math., 206:1 (2016), 109–146 | DOI | MR | Zbl

[2] Avila A., Hubert P., Skripchenko A., “On the Hausdorff dimension of the Rauzy gasket”, Bull. Soc. math. France, 144:3 (2016), 539–568 | DOI | MR | Zbl

[3] R. De Leo, “The existence and measure of ergodic foliations in Novikov's problem of the semiclassical motion of an electron”, Russ. Math. Surv., 55:1 (2000), 166–168 | DOI | DOI | MR | Zbl

[4] R. De Leo, “Characterization of the set of ‘ergodic directions’ in Novikov's problem of quasi-electron orbits in normal metals”, Russ. Math. Surv., 58:5 (2003), 1042–1043 | DOI | DOI | MR | Zbl

[5] De Leo R., “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Exp. Math., 15:1 (2006), 109–124 | DOI | MR | Zbl

[6] R. De Leo and I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Russ. Math. Surv., 62:5 (2007), 990–992 | DOI | DOI | MR | Zbl

[7] De Leo R., Dynnikov I.A., “Geometry of plane sections of the infinite regular skew polyhedron $\{4,6\mid 4\}$”, Geom. dedicata, 138 (2009), 51–67 | DOI | MR | Zbl

[8] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture for the case of small perturbations of rational magnetic fields”, Russ. Math. Surv., 47:3 (1992), 172–173 | DOI | MR | Zbl

[9] I. A. Dynnikov, “Proof of S. P. Novikov's conjecture on the semiclassical motion of an electron”, Math. Notes, 53:5 (1993), 495–501 | DOI | MR | Zbl

[10] Dynnikov I., “Surfaces in 3-torus: Geometry of plane sections”, European Congress of Mathematics (ECM), Budapest, 1996, v. 1, Prog. Math., 168, Birkhäuser, Basel, 1998, 162–177 | DOI | MR | Zbl

[11] Dynnikov I.A., “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, ed. by V.M. Buchstaber, S.P. Novikov, Am. Math. Soc., Providence, RI, 1997, 45–73 | MR | Zbl

[12] I. A. Dynnikov, “The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron”, Russ. Math. Surv., 54:1 (1999), 21–59 | DOI | DOI | MR | Zbl

[13] I. A. Dynnikov, “Interval identification systems and plane sections of 3-periodic surfaces”, Proc. Steklov Inst. Math., 263 (2008), 65–77 | DOI | MR | Zbl

[14] Dynnikov I., Hubert P., Skripchenko A., “Dynamical systems around the Rauzy gasket and their ergodic properties”, Int. Math. Res. Not., 2023:8 (2023), 6461–6503 ; arXiv: 2011.15043 [math.DS] | Zbl | DOI | DOI

[15] I. Dynnikov and A. Maltsev, “Features of the motion of ultracold atoms in quasiperiodic potentials”, J. Exp. Theor. Phys., 133:6 (2021), 711–736 ; arXiv: 2306.11257 [math-ph] | DOI | DOI | MR | DOI | DOI

[16] I. A. Dynnikov, A. Ya. Maltsev, and S. P. Novikov, “Geometry of quasiperiodic functions on the plane”, Russ. Math. Surv., 77:6 (2022), 1061–1085 | DOI | DOI | DOI | MR | Zbl

[17] I. A. Dynnikov and S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russ. Math. Surv., 60:1 (2005), 1–26 | DOI | DOI | MR | Zbl

[18] Dynnikov I., Skripchenko A., “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems, and mathematical physics: Novikov's seminar 2012–2014, AMS Transl. Ser. 2, 234. Adv. Math. Sci.{;} V. 67, ed. by V.M. Buchstaber et al., Am. Math. Soc., Providence, RI, 2014, 173–199 ; arXiv: 1309.4884 [math.GT] | MR | Zbl | DOI | DOI

[19] I. Dynnikov and A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Trans. Moscow Math. Soc., 2015 (2015), 251–269 | DOI | MR | Zbl

[20] Essam J.W., “Percolation theory”, Rep. Prog. Phys., 43:7 (1980), 833–912 | DOI | MR

[21] Gopalakrishnan S., Martin I., Demler E.A., “Quantum quasicrystals of spin-orbit-coupled dipolar bosons”, Phys. Rev. Lett., 111:18 (2013), 185304 | DOI

[22] Guidoni L., Dépret B., di Stefano A., Verkerk P., “Atomic diffusion in an optical quasicrystal with five-fold symmetry”, Phys. Rev. A, 60:6 (1999), R4233–R4236 | DOI

[23] Guidoni L., Triché C., Verkerk P., Grynberg G., “Quasiperiodic optical lattices”, Phys. Rev. Lett., 79:18 (1997), 3363–3366 | DOI

[24] Guidoni L., Verkerk P., “Optical lattices: Cold atoms ordered by light”, J. Opt. B: Quantum Semiclass. Opt., 1:5 (1999), R23–R45 | DOI

[25] Lesser O., Lifshitz R., “Emergence of quasiperiodic Bloch wave functions in quasicrystals”, Phys. Rev. Res., 4:1 (2022), 013226 | DOI

[26] I. M. Lifshitz, M. Ia. Azbel', and M. I. Kaganov, “The theory of galvanomagnetic effects in metals”, Sov. Phys. JETP, 4:1 (1957), 41–54 | MR | MR | Zbl

[27] I. M. Lifshits, M. Ya. Azbel', and M. I. Kaganov, Electron Theory of Metals, Consultants Bureau, New York, 1973

[28] I. M. Lifshitz and V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. I”, Sov. Phys. JETP, 8:5 (1959), 875–883

[29] I. M. Lifshitz and V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. II”, Sov. Phys. JETP, 11:1 (1960), 137–141

[30] Maltsev A.Ya., “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149 | DOI | MR | Zbl

[31] Maltsev A.Ya., Novikov S.P., “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc., 34:1 (2003), 171–210 | DOI | MR | Zbl

[32] Maltsev A.Ya., Novikov S.P., “Dynamical systems, topology, and conductivity in normal metals”, J. Stat. Phys., 115:1–2 (2004), 31–46 | DOI | MR | Zbl

[33] A. Ya. Maltsev and S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297 | DOI | DOI | MR | Zbl

[34] Maltsev A.Ya., Novikov S.P., “Open level lines of a superposition of periodic potentials on a plane”, Ann. Phys., 447, Pt. 2 (2022), 169039 | DOI | MR | Zbl

[35] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russ. Math. Surv., 37:5 (1982), 1–56 | DOI | DOI | MR | Zbl

[36] S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems”, Russ. Math. Surv., 54:5 (1999), 1031–1032 | DOI | DOI | MR | Zbl

[37] S. P. Novikov and A. Ya. Mal'tsev, “Topological quantum characteristics observed in the investigation of the conductivity in normal metals”, JETP Lett., 63:10 (1996), 855–860 | DOI

[38] S. P. Novikov and A. Ya. Mal'tsev, “Topological phenomena in normal metals”, Phys. Usp., 41:3 (1998), 231–239 | DOI | DOI

[39] Sanchez-Palencia L., Santos L., “Bose–Einstein condensates in optical quasicrystal lattices”, Phys. Rev. A, 72:5 (2005), 053607 | DOI

[40] Skripchenko A., “Symmetric interval identification systems of order three”, Discrete Contin. Dyn. Sys., 32:2 (2012), 643–656 | DOI | MR | Zbl

[41] Skripchenko A., “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann. Global Anal. Geom., 43:3 (2013), 253–271 | DOI | MR | Zbl

[42] Stauffer D., “Scaling theory of percolation clusters”, Phys. Rep., 54:1 (1979), 1–74 | DOI | MR

[43] Titov M., Katsnelson M.I., “Metal-insulator transition in graphene on boron nitride”, Phys. Rev. Lett., 113:9 (2014), 096801 | DOI

[44] Wang Y., Zhang J.-H., Li Y., et al., “Observation of interaction-induced mobility edge in an atomic Aubry–André wire”, Phys. Rev. Lett., 129:10 (2022), 103401 | DOI

[45] A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Russ. Math. Surv., 39:5 (1984), 287–288 | DOI | MR | Zbl

[46] Zorich A., “Asymptotic flag of an orientable measured foliation on a surface”, Geometric study of foliations: Proc. Int. Symp./Workshop, Tokyo, 1993, ed. by T. Mizutani et al., World Scientific, Singapore, 1994, 479–498 | MR

[47] Zorich A., “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents”, Ann. Inst. Fourier, 46:2 (1996), 325–370 | DOI | MR | Zbl

[48] Zorich A., “On hyperplane sections of periodic surfaces”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, ed. by V.M. Buchstaber, S.P. Novikov, Am. Math. Soc., Providence, RI, 1997, 173–189 | MR | Zbl

[49] Zorich A., “How do the leaves of a closed 1-form wind around a surface?”, Pseudoperiodic topology, AMS Transl. Ser. 2, 197, ed. by V.I. Arnold et al., Am. Math. Soc., Providence, RI, 1999, 135–178 ; Adv. Math. Sci., 46 | MR | Zbl

[50] Zorich A., “Flat surfaces”, Frontiers in number theory, physics, and geometry, v. 1, On random matrices, zeta functions, and dynamical systems, ed. by P. Cartier et al., Springer, Berlin, 2006, 439–585 | DOI | MR