Mots-clés : Delone (Delaunay) set
@article{TRSPY_2024_325_a6,
author = {N. P. Dolbilin},
title = {Local {Theory} of {Regular} {Systems} and {Delone} {Sets}},
journal = {Informatics and Automation},
pages = {129--145},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a6/}
}
N. P. Dolbilin. Local Theory of Regular Systems and Delone Sets. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 129-145. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a6/
[1] Baburin I.A., Bouniaev M., Dolbilin N., Erokhovets N.Yu., Garber A., Krivovichev S.V., Schulte E., “On the origin of crystallinity: A lower bound for the regularity radius of Delone sets”, Acta crystallogr. Sect. A, 74:6 (2018), 616–629 | DOI | MR | Zbl
[2] Bieberbach L., “Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich”, Math. Ann., 72:3 (1912), 400–412 | DOI | MR
[3] Delone B.N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62
[4] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points”, Sov. Math., Dokl., 17 (1976), 319–322 | MR | Zbl
[5] Delone B., Padurov N., Aleksandrov A., Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, ONTI, GTTI, L.; M., 1934
[6] Dolbilin N.P., “Kriterii kristalla i lokalno antipodalnye mnozhestva Delone”, Vestn. ChelGU, 2015, no. 3, 6–17
[7] N. P. Dolbilin, “Delone sets in $\mathbb R^3$ with $2R$-regularity conditions”, Proc. Steklov Inst. Math., 302 (2018), 161–185 | DOI | DOI | MR | Zbl
[8] Dolbilin N.P., “Ot lokalnoi identichnosti k globalnoi simmetrii”, Mater. XIII Mezhdunar. sem. “Diskretnaya matematika i ee prilozheniya” im. akad. O.B. Lupanova, Izd-vo mekh.-mat. f-ta MGU, M., 2019, 13–22
[9] Dolbilin N., “Local groups in Delone sets”, Numerical geometry, grid generation and scientific computing, Lect. Notes Comput. Sci. Eng., 143, Springer, Cham, 2021, 3–11 ; arXiv: 2011.00558 [math.MG] | DOI | MR | Zbl | DOI
[10] Dolbilin N., Garber A., Leopold U., Schulte E., Senechal M., “On the regularity radius of Delone sets in $\mathbb R^3$”, Discrete Comput. Geom., 66 (2021), 996–1024 | DOI | MR | Zbl
[11] Dolbilin N., Garber A., Schulte E., Senechal M., “Bounds for the regularity radius of Delone sets”, Discrete Comput. Geom., 2024 ; arXiv: https://doi.org/10.1007/s00454-024-00666-62306.11127 [math.MG] | DOI
[12] Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20:4 (1998), 477–498 | DOI | MR | Zbl
[13] N. P. Dolbilin and A. N. Magazinov, “Locally antipodal Delaunay sets”, Russ. Math. Surv., 70:5 (2015), 958–960 | DOI | DOI | MR | Zbl
[14] Dolbilin N., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry: Proc. 1995 Fall Programme Fields Inst., Toronto, 1995, Fields Inst. Monogr., 10, Am. Math. Soc., Providence, RI, 1998, 193–199 | DOI | MR | Zbl
[15] Dolbilin N.P., Shtogrin M.I., “Lokalnyi kriterii dlya kristallicheskikh struktur”, Tez. IX Vsesoyuz. geom. konf., Kishinev, 1988, In-t matematiki AN MSSR, Kishinev, 1988, 99
[16] N. P. Dolbilin and M. I. Shtogrin, “Crystallographic properties of local groups of a Delone set in a Euclidean plane”, Comput. Math. Math. Phys., 62:8 (2022), 1265–1274 | DOI | DOI | MR | Zbl
[17] N. P. Dolbilin and M. I. Shtogrin, “Delone sets and tilings: Local approach”, Proc. Steklov Inst. Math., 318 (2022), 65–89 | DOI | DOI | MR | Zbl
[18] Dolbilin N., Shtogrin M., “Local groups in Delone sets in the Euclidean space”, Acta crystallogr. Sect. A, 78:5 (2022), 452–458 | DOI | MR
[19] Engel P., Geometric crystallography: An axiomatic introduction to crystallography, D. Reidel Publ., Dordrecht, 1986 | Zbl
[20] Fedorov E.S., Nachala ucheniya o figurakh, Tip. Imp. AN, SPb., 1885 ; Изд-во АН СССР, М., 1953 | MR
[21] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, v. II, Ch. 30, Addison Wesley, Reading, MA, 1964 | MR | MR
[22] Hales T.C., “A proof of the Kepler conjecture”, Ann. Math. Ser. 2, 162:3 (2005), 1065–1185 ; arXiv: math/9811078 [math.MG] | DOI | MR | Zbl | DOI
[23] Problemy Gilberta, Pod red. P.S. Aleksandrova, Nauka, M., 1969
[24] Kepler J., Strena seu de nive sexangula, 1611; Kepler I., O shestiugolnykh snezhinkakh, Nauka, M., 1982; The Six-Cornered Snowflake, Paul Dry Books, Philadelphia, 2010
[25] Penrose R., “The role of aesthetics in pure and applied mathematical research”, Bull. Inst. Math. Appl., 10:7–8 (1974), 266–271 | MR
[26] Shtogrin M.I., “Ob ogranichenii poryadka osi pauchka v lokalno pravilnoi sisteme Delone”, Geometry, topology, algebra and number theory, applications: Int. Conf. dedicated to the 120th anniversary of Boris Delone, Moscow, 2010: Abstracts, Steklov Math. Inst., Moscow, 2010, 168–169
[27] Sohncke L., Entwicklung einer Theorie der Krystallstruktur, Teubner, Leipzig, 1879