Local Theory of Regular Systems and Delone Sets
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 129-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We survey the results of the local theory of regular systems that are related to estimating the regularity radius. We also discuss recent results on local groups in arbitrary Delone sets in the plane and in the three-dimensional space, including new theorems and conjectures generalizing the classical statement on the absence of fivefold rotations in lattices.
Keywords: crystallographic group, regular system, multiregular system, cluster, local group, regularity radius.
Mots-clés : Delone (Delaunay) set
@article{TRSPY_2024_325_a6,
     author = {N. P. Dolbilin},
     title = {Local {Theory} of {Regular} {Systems} and {Delone} {Sets}},
     journal = {Informatics and Automation},
     pages = {129--145},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a6/}
}
TY  - JOUR
AU  - N. P. Dolbilin
TI  - Local Theory of Regular Systems and Delone Sets
JO  - Informatics and Automation
PY  - 2024
SP  - 129
EP  - 145
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a6/
LA  - ru
ID  - TRSPY_2024_325_a6
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%T Local Theory of Regular Systems and Delone Sets
%J Informatics and Automation
%D 2024
%P 129-145
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a6/
%G ru
%F TRSPY_2024_325_a6
N. P. Dolbilin. Local Theory of Regular Systems and Delone Sets. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 129-145. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a6/

[1] Baburin I.A., Bouniaev M., Dolbilin N., Erokhovets N.Yu., Garber A., Krivovichev S.V., Schulte E., “On the origin of crystallinity: A lower bound for the regularity radius of Delone sets”, Acta crystallogr. Sect. A, 74:6 (2018), 616–629 | DOI | MR | Zbl

[2] Bieberbach L., “Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich”, Math. Ann., 72:3 (1912), 400–412 | DOI | MR

[3] Delone B.N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62

[4] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points”, Sov. Math., Dokl., 17 (1976), 319–322 | MR | Zbl

[5] Delone B., Padurov N., Aleksandrov A., Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, ONTI, GTTI, L.; M., 1934

[6] Dolbilin N.P., “Kriterii kristalla i lokalno antipodalnye mnozhestva Delone”, Vestn. ChelGU, 2015, no. 3, 6–17

[7] N. P. Dolbilin, “Delone sets in $\mathbb R^3$ with $2R$-regularity conditions”, Proc. Steklov Inst. Math., 302 (2018), 161–185 | DOI | DOI | MR | Zbl

[8] Dolbilin N.P., “Ot lokalnoi identichnosti k globalnoi simmetrii”, Mater. XIII Mezhdunar. sem. “Diskretnaya matematika i ee prilozheniya” im. akad. O.B. Lupanova, Izd-vo mekh.-mat. f-ta MGU, M., 2019, 13–22

[9] Dolbilin N., “Local groups in Delone sets”, Numerical geometry, grid generation and scientific computing, Lect. Notes Comput. Sci. Eng., 143, Springer, Cham, 2021, 3–11 ; arXiv: 2011.00558 [math.MG] | DOI | MR | Zbl | DOI

[10] Dolbilin N., Garber A., Leopold U., Schulte E., Senechal M., “On the regularity radius of Delone sets in $\mathbb R^3$”, Discrete Comput. Geom., 66 (2021), 996–1024 | DOI | MR | Zbl

[11] Dolbilin N., Garber A., Schulte E., Senechal M., “Bounds for the regularity radius of Delone sets”, Discrete Comput. Geom., 2024 ; arXiv: https://doi.org/10.1007/s00454-024-00666-62306.11127 [math.MG] | DOI

[12] Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20:4 (1998), 477–498 | DOI | MR | Zbl

[13] N. P. Dolbilin and A. N. Magazinov, “Locally antipodal Delaunay sets”, Russ. Math. Surv., 70:5 (2015), 958–960 | DOI | DOI | MR | Zbl

[14] Dolbilin N., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry: Proc. 1995 Fall Programme Fields Inst., Toronto, 1995, Fields Inst. Monogr., 10, Am. Math. Soc., Providence, RI, 1998, 193–199 | DOI | MR | Zbl

[15] Dolbilin N.P., Shtogrin M.I., “Lokalnyi kriterii dlya kristallicheskikh struktur”, Tez. IX Vsesoyuz. geom. konf., Kishinev, 1988, In-t matematiki AN MSSR, Kishinev, 1988, 99

[16] N. P. Dolbilin and M. I. Shtogrin, “Crystallographic properties of local groups of a Delone set in a Euclidean plane”, Comput. Math. Math. Phys., 62:8 (2022), 1265–1274 | DOI | DOI | MR | Zbl

[17] N. P. Dolbilin and M. I. Shtogrin, “Delone sets and tilings: Local approach”, Proc. Steklov Inst. Math., 318 (2022), 65–89 | DOI | DOI | MR | Zbl

[18] Dolbilin N., Shtogrin M., “Local groups in Delone sets in the Euclidean space”, Acta crystallogr. Sect. A, 78:5 (2022), 452–458 | DOI | MR

[19] Engel P., Geometric crystallography: An axiomatic introduction to crystallography, D. Reidel Publ., Dordrecht, 1986 | Zbl

[20] Fedorov E.S., Nachala ucheniya o figurakh, Tip. Imp. AN, SPb., 1885 ; Изд-во АН СССР, М., 1953 | MR

[21] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, v. II, Ch. 30, Addison Wesley, Reading, MA, 1964 | MR | MR

[22] Hales T.C., “A proof of the Kepler conjecture”, Ann. Math. Ser. 2, 162:3 (2005), 1065–1185 ; arXiv: math/9811078 [math.MG] | DOI | MR | Zbl | DOI

[23] Problemy Gilberta, Pod red. P.S. Aleksandrova, Nauka, M., 1969

[24] Kepler J., Strena seu de nive sexangula, 1611; Kepler I., O shestiugolnykh snezhinkakh, Nauka, M., 1982; The Six-Cornered Snowflake, Paul Dry Books, Philadelphia, 2010

[25] Penrose R., “The role of aesthetics in pure and applied mathematical research”, Bull. Inst. Math. Appl., 10:7–8 (1974), 266–271 | MR

[26] Shtogrin M.I., “Ob ogranichenii poryadka osi pauchka v lokalno pravilnoi sisteme Delone”, Geometry, topology, algebra and number theory, applications: Int. Conf. dedicated to the 120th anniversary of Boris Delone, Moscow, 2010: Abstracts, Steklov Math. Inst., Moscow, 2010, 168–169

[27] Sohncke L., Entwicklung einer Theorie der Krystallstruktur, Teubner, Leipzig, 1879