Tamanoi Equation for Orbifold Euler Characteristics Revisited
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 119-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Tamanoi equation is a Macdonald-type equation for the orbifold Euler characteristic and for its higher order analogs. It states that the generating series of fixed-order orbifold Euler characteristics of analogs of the symmetric powers for a space with a finite group action can be represented as a certain unified (explicitly written) power series raised to the power equal to the orbifold Euler characteristic of the same order of the space itself. In the paper, in particular, we explain how the Tamanoi equation follows from its verification for actions of (finite) groups on the one-point space. We generalize the statements used for this purpose to analogs of the orbifold Euler characteristic corresponding to finitely generated groups. We show that, for these generalizations, an analog of the Tamanoi equation does not hold in general.
Mots-clés : finite group actions
Keywords: orbifold Euler characteristics, Macdonald-type equations.
@article{TRSPY_2024_325_a5,
     author = {S. M. Gusein-Zade},
     title = {Tamanoi {Equation} for {Orbifold} {Euler} {Characteristics} {Revisited}},
     journal = {Informatics and Automation},
     pages = {119--128},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a5/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
TI  - Tamanoi Equation for Orbifold Euler Characteristics Revisited
JO  - Informatics and Automation
PY  - 2024
SP  - 119
EP  - 128
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a5/
LA  - ru
ID  - TRSPY_2024_325_a5
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%T Tamanoi Equation for Orbifold Euler Characteristics Revisited
%J Informatics and Automation
%D 2024
%P 119-128
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a5/
%G ru
%F TRSPY_2024_325_a5
S. M. Gusein-Zade. Tamanoi Equation for Orbifold Euler Characteristics Revisited. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 119-128. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a5/

[1] Atiyah M., Segal G., “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl

[2] Bryan J., Fulman J., “Orbifold Euler characteristics and the number of commuting $m$-tuples in the symmetric groups”, Ann. Comb., 2:1 (1998), 1–6 | DOI | MR | Zbl

[3] Farsi C., Seaton Ch., “Generalized orbifold Euler characteristics for general orbifolds and wreath products”, Algebr. Geom. Topol., 11:1 (2011), 523–551 | DOI | MR | Zbl

[4] S. M. Gusein-Zade, “Equivariant analogues of the Euler characteristic and Macdonald type equations”, Russ. Math. Surv., 72:1 (2017), 1–32 | DOI | DOI | MR | Zbl

[5] Gusein-Zade S.M., Luengo I., Melle-Hernández A., “Grothendieck ring of varieties with actions of finite groups”, Proc. Edinb. Math. Soc. Ser. 2, 62:4 (2019), 925–948 | DOI | MR | Zbl

[6] Hirzebruch F., Höfer T., “On the Euler number of an orbifold”, Math. Ann., 286:1–3 (1990), 255–260 | DOI | MR | Zbl

[7] Macdonald I.G., “The Poincaré polynomial of a symmetric product”, Proc. Cambridge Philos. Soc., 58 (1962), 563–568 | DOI | MR | Zbl

[8] Roan Sh., “Minimal resolutions of Gorenstein orbifolds in dimension three”, Topology, 35:2 (1996), 489–508 | DOI | MR | Zbl

[9] Satake I., “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9:4 (1957), 464–492 | DOI | MR | Zbl

[10] Tamanoi H., “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory”, Algebr. Geom. Topol., 1:1 (2001), 115–141 | DOI | MR | Zbl

[11] Tom Dieck T., Transformation groups, De Gruyter Stud. Math., 8, W. de Gruyter, Berlin, 1987 | MR | Zbl

[12] Wang W., “Equivariant $K$-theory, wreath products, and Heisenberg algebra”, Duke Math. J., 103:1 (2000), 1–23 | DOI | MR | Zbl