Keywords: orbifold Euler characteristics, Macdonald-type equations.
@article{TRSPY_2024_325_a5,
author = {S. M. Gusein-Zade},
title = {Tamanoi {Equation} for {Orbifold} {Euler} {Characteristics} {Revisited}},
journal = {Informatics and Automation},
pages = {119--128},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a5/}
}
S. M. Gusein-Zade. Tamanoi Equation for Orbifold Euler Characteristics Revisited. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 119-128. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a5/
[1] Atiyah M., Segal G., “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl
[2] Bryan J., Fulman J., “Orbifold Euler characteristics and the number of commuting $m$-tuples in the symmetric groups”, Ann. Comb., 2:1 (1998), 1–6 | DOI | MR | Zbl
[3] Farsi C., Seaton Ch., “Generalized orbifold Euler characteristics for general orbifolds and wreath products”, Algebr. Geom. Topol., 11:1 (2011), 523–551 | DOI | MR | Zbl
[4] S. M. Gusein-Zade, “Equivariant analogues of the Euler characteristic and Macdonald type equations”, Russ. Math. Surv., 72:1 (2017), 1–32 | DOI | DOI | MR | Zbl
[5] Gusein-Zade S.M., Luengo I., Melle-Hernández A., “Grothendieck ring of varieties with actions of finite groups”, Proc. Edinb. Math. Soc. Ser. 2, 62:4 (2019), 925–948 | DOI | MR | Zbl
[6] Hirzebruch F., Höfer T., “On the Euler number of an orbifold”, Math. Ann., 286:1–3 (1990), 255–260 | DOI | MR | Zbl
[7] Macdonald I.G., “The Poincaré polynomial of a symmetric product”, Proc. Cambridge Philos. Soc., 58 (1962), 563–568 | DOI | MR | Zbl
[8] Roan Sh., “Minimal resolutions of Gorenstein orbifolds in dimension three”, Topology, 35:2 (1996), 489–508 | DOI | MR | Zbl
[9] Satake I., “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9:4 (1957), 464–492 | DOI | MR | Zbl
[10] Tamanoi H., “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory”, Algebr. Geom. Topol., 1:1 (2001), 115–141 | DOI | MR | Zbl
[11] Tom Dieck T., Transformation groups, De Gruyter Stud. Math., 8, W. de Gruyter, Berlin, 1987 | MR | Zbl
[12] Wang W., “Equivariant $K$-theory, wreath products, and Heisenberg algebra”, Duke Math. J., 103:1 (2000), 1–23 | DOI | MR | Zbl