Keywords: exactly solvable models, spatially periodic problem, finite-gap integration, spectral curves close to degenerate ones, asymptotic solutions in terms of elementary functions.
@article{TRSPY_2024_325_a4,
author = {P. G. Grinevich},
title = {Riemann {Surfaces} {Close} to {Degenerate} {Ones} in the {Theory} of {Rogue} {Waves}},
journal = {Informatics and Automation},
pages = {93--118},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a4/}
}
P. G. Grinevich. Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 93-118. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a4/
[1] Ablowitz M.J., Hammack J., Henderson D., Schober C.M., “Long-time dynamics of the modulational instability of deep water waves”, Physica D, 152–153 (2001), 416–433 | DOI | MR | Zbl
[2] Ablowitz M.J., Herbst B.M., “On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation”, SIAM J. Appl. Math., 50:2 (1990), 339–351 | DOI | MR | Zbl
[3] Ablowitz M.J., Schober C., Herbst B.M., “Numerical chaos, roundoff errors, and homoclinic manifolds”, Phys. Rev. Lett., 71:17 (1993), 2683–2686 | DOI
[4] Ablowitz M.J., Segur H., Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, SIAM, Philadelphia, 1981 | DOI | MR | Zbl
[5] Agafontsev D.S., Gelash A.A., Mullyadzhanov R.I., Zakharov V.E., “Bound-state soliton gas as a limit of adiabatically growing integrable turbulence”, Chaos Solitons Fractals, 166 (2023), 112951 | DOI | MR
[6] Agafontsev D.S., Zakharov V.E., “Integrable turbulence and formation of rogue waves”, Nonlinearity, 28:8 (2015), 2791–2821 | DOI | MR | Zbl
[7] Akhmediev N.N., “Déjà vu in optics”, Nature, 413 (2001), 267–268 | DOI
[8] Akhmediev N., Dudley J.M., Solli D.R., Turitsyn S.K., “Recent progress in investigating optical rogue waves”, J. Opt., 15:6 (2013), 060201 | DOI
[9] N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions”, Sov. Phys., JETP, 62:5 (1985), 894–899
[10] N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schrödinger equation”, Theor. Math. Phys., 72:2 (1987), 809–818 | DOI | MR | Zbl
[11] N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation”, Theor. Math. Phys., 69:2 (1986), 1089–1093 | DOI | MR | Zbl
[12] Anker D., Freeman N.C., “On the soliton solutions of the Davey–Stewartson equation for long waves”, Proc. R. Soc. London A, 360:1703 (1978), 529–540 | DOI | MR | Zbl
[13] Ayano T., Buchstaber V.M., “Relationships between hyperelliptic functions of genus 2 and elliptic functions”, SIGMA, Symmetry Integrability Geom. Methods Appl., 18 (2022), 010 | DOI | MR | Zbl
[14] M. V. Babich, A. I. Bobenko, and V. B. Matveev, “Reductions of Riemann theta-functions of genus $g$ to theta-functions of lower genus, and symmetries of algebraic curves”, Sov. Math., Dokl., 28 (1983), 304–308 | MR | Zbl
[15] Bailung H., Sharma S.K., Nakamura Y., “Observation of Peregrine solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 107 (2011), 255005 | DOI
[16] Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., Matveev V.B., Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dyn., Springer, Berlin, 1994 | Zbl
[17] Benjamin T.B., Feir J.E., “The disintegration of wave trains on deep water. Part I: Theory”, J. Fluid Mech., 27:3 (1967), 417–430 | DOI | Zbl
[18] Benney D.J., Roskes G.J., “Wave instabilities”, Stud. Appl. Math., 48 (1969), 377–385 | DOI | Zbl
[19] Bertola M., El G.A., Tovbis A., “Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation”, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 472:2194 (2016), 20160340 | DOI | MR | Zbl
[20] Bertola M., Tovbis A., “Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: Rational breathers and poles of the tritronquée solution to Painlevé I”, Commun. Pure Appl. Math., 66:5 (2013), 678–752 | DOI | MR | Zbl
[21] V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids”, JETP Lett., 3:12 (1966), 307–310
[22] Biondini G., Kireyev D., “On the periodic solutions of the Davey–Stewartson systems”, East Asian J. Appl. Math., 12 (2022), 1–21 | DOI | MR | Zbl
[23] Biondini G., Kireyev D., Maruno K., “Soliton resonance and web structure in the Davey–Stewartson system”, J. Phys. A: Math. Theor., 55:30 (2022), 305701 | DOI | MR | Zbl
[24] Biondini G., Li S., Mantzavinos D., “Oscillation structure of localized perturbations in modulationally unstable media”, Phys. Rev. E, 94:6 (2016), 060201(R) | DOI
[25] Biondini G., Luo X.-D., Oregero J., Tovbis A., “Elliptic finite-band potentials of a non-self-adjoint Dirac operator”, Adv. Math., 429 (2023), 109188 | DOI | MR | Zbl
[26] Bludov Yu.V., Konotop V.V., Akhmediev N., “Matter rogue waves”, Phys. Rev. A, 80:3 (2009), 033610 | DOI | MR
[27] Boiti M., Leon J.J.-P., Martina L., Pempinelli F., “Scattering of localized solitons in the plane”, Phys. Lett. A, 132:8–9 (1988), 432–439 | DOI | MR
[28] Bortolozzo U., Montina A., Arecchi F.T., Huignard J.P., Residori S., “Spatiotemporal pulses in a liquid crystal optical oscillator”, Phys. Rev. Lett., 99:2 (2007), 023901 | DOI
[29] Boutet de Monvel A., Kotlyarov V.P., Shepelsky D., “Focusing NLS equation: Long-time dynamics of step-like initial data”, Int. Math. Res. Not., 2011:7 (2011), 1613–1653 | DOI | MR | Zbl
[30] Buckingham R., Venakides S., “Long-time asymptotics of the nonlinear Schrödinger equation shock problem”, Commun. Pure Appl. Math., 60:9 (2007), 1349–1414 | DOI | MR | Zbl
[31] Calini A., Ercolani N.M., McLaughlin D.W., Schober C.M., “Mel'nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation”, Physica D, 89:3–4 (1996), 227–260 | DOI | MR | Zbl
[32] Calini A., Schober C.M., “Homoclinic chaos increases the likelihood of rogue wave formation”, Phys. Lett. A, 298:5–6 (2002), 335–349 | DOI | MR | Zbl
[33] Calini A., Schober C.M., “Dynamical criteria for rogue waves in nonlinear Schrödinger models”, Nonlinearity, 25:12 (2012), R99–R116 | DOI | MR | Zbl
[34] Calini A., Schober C.M., “Observable and reproducible rogue waves”, J. Opt., 15:10 (2013), 105201 | DOI
[35] Calini A., Schober C.M., “Numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger equation”, Nat. Hazards Earth Syst. Sci., 14:6 (2014), 1431–1440 | DOI
[36] Chabchoub A., Hoffmann N.P., Akhmediev N., “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502 | DOI
[37] I. V. Cherednik, “Reality conditions in ‘finite-zone integration’”, Sov. Phys., Dokl., 25:6 (1980), 450–452 | MR | Zbl
[38] Coppini F., Grinevich P.G., Santini P.M., “Effect of a small loss or gain in the periodic nonlinear Schrödinger anomalous wave dynamics”, Phys. Rev. E, 101:3 (2020), 032204 | DOI | MR
[39] Coppini F., Grinevich P.G., Santini P.M., “Periodic rogue waves and perturbation theory”, Perturbation theory: Mathematics, methods and applications, Encycl. Complex. Syst. Sci. Ser., Springer, New York, 2022, 565–584 | DOI | MR
[40] Coppini F., Grinevich P.G., Santini P.M., “The periodic $N$ breather anomalous wave solution of the Davey–Stewartson equations; first appearance, recurrence, and blow up properties”, J. Phys. A: Math. Theor., 57:1 (2023), 015208 | DOI | MR
[41] Coppini F., Santini P.M., “Fermi–Pasta–Ulam–Tsingou recurrence of periodic anomalous waves in the complex Ginzburg–Landau and in the Lugiato–Lefever equations”, Phys. Rev. E, 102:6 (2020), 062207 | DOI | MR
[42] Coppini F., Santini P.M., “Modulation instability, periodic anomalous wave recurrence, and blow up in the Ablowitz–Ladik lattices”, J. Phys. A: Math. Theor., 57:1 (2024), 015202 | DOI | MR | Zbl
[43] Coppini F., Santini P.M., “The effect of loss/gain and Hamiltonian perturbations of the Ablowitz–Ladik lattice on the recurrence of periodic anomalous waves”, J. Phys. A: Math. Theor., 57:7 (2024), 075701 | DOI | MR | Zbl
[44] Davey A., Stewartson K., “On three-dimensional packets of surface waves”, Proc. R. Soc. London A, 338:1613 (1974), 101–110 | DOI | MR | Zbl
[45] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR | Zbl
[46] Dematteis G., Grafke T., Onorato M., Vanden-Eijnden E., “Experimental evidence of hydrodynamic instantons: The universal route to rogue waves”, Phys. Rev. X, 9:4 (2019), 041057 | DOI
[47] Dubard P., Gaillard P., Klein C., Matveev V.B., “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185 (2010), 247–258 | DOI
[48] B. A. Dubrovin, “Inverse problem for periodic finite-zoned potentials in the theory of scattering”, Funct. Anal. Appl., 9:1 (1975), 61–62 | DOI | MR | Zbl
[49] B. A. Dubrovin, “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[50] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Sov. Math., Dokl., 17 (1976), 947–951 | MR | Zbl
[51] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russ. Math. Surv., 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl
[52] Dyachenko A.I., Kachulin D.I., Zakharov V.E., “Freak-waves: Compact equation versus fully nonlinear one”, Extreme ocean waves, Springer, Cham, 2016, 23–44 | DOI
[53] Dyachenko A.I., Kachulin D.I., Zakharov V.E., “Super compact equation for water waves”, J. Fluid Mech., 828 (2017), 661–679 | DOI | MR | Zbl
[54] A. I. Dyachenko and V. E. Zakharov, “Modulation instability of Stokes wave $\to $ freak wave”, JETP Lett., 81:6 (2005), 255–259 | DOI
[55] A. I. Dyachenko and V. E. Zakharov, “On the formation of freak waves on the surface of deep water”, JETP Lett., 88:5 (2008), 307–311 | DOI
[56] Dysthe K.B., Trulsen K., “Note on breather type solutions of the NLS as models for freak-waves”, Phys. scripta, T82 (1999), 48–52 | DOI
[57] Efimov V.B., Ganshin A.N., Kolmakov G.V., McClintock P.V.E., Mezhov-Deglin L.P., “Rogue waves in superfluid helium”, Eur. Phys. J. Spec. Top., 185 (2010), 181–193 | DOI
[58] El G.A., “Soliton gas in integrable dispersive hydrodynamics”, J. Stat. Mech. Theory Exp., 2021 (2021), 114001 | DOI | MR
[59] El G., Tobvis A., “Spectral theory of soliton and breather gases for the focusing nonlinear Schrödinger equation”, Phys. Rev. E, 101:5 (2020), 052207 | DOI | MR
[60] Ercolani N., Forest M.G., McLaughlin D.W., “Geometry of the modulational instability. III: Homoclinic orbits for the periodic sine-Gordon equation”, Physica D, 43:2–3 (1990), 349–384 | DOI | MR | Zbl
[61] Fay J.D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl
[62] Fedele F., Brennan J., Ponce de León S., Dudley J., Dias F., “Real world ocean rogue waves explained without the modulational instability”, Sci. Rep., 6 (2016), 27715 | DOI
[63] Fermi E., Pasta J., Ulam S., Studies of non linear problems, Document LA-1940, Los Alamos Natl. Lab., Los Alamos, 1955; Fermi E., Note e memorie (Collected papers), Univ. Chicago Press, Chicago, 1965, 977–988 | MR
[64] Ganshin A.N., Efimov V.B., Kolmakov G.V., Mezhov-Deglin L.P., McClintock P.V.E., “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium”, Phys. Rev. Lett., 101:6 (2008), 065303 | DOI
[65] Gelash A.A., “Formation of rogue waves from a locally perturbed condensate”, Phys. Rev. E, 97:2 (2018), 022208 | DOI
[66] Gelash A., Agafontsev D., Zakharov V., et al., “Bound state soliton gas dynamics underlying the spontaneous modulational instability”, Phys. Rev. Lett., 123:23 (2019), 234102 | DOI | MR
[67] Gelash A., Xu G., Kibler B., “Management of breather interactions”, Phys. Rev. Res., 4:3 (2022), 033197 | DOI | MR
[68] Gelash A.A., Zakharov V.E., “Superregular solitonic solutions: A novel scenario for the nonlinear stage of modulation instability”, Nonlinearity, 27:4 (2014), R1–R39 | DOI | MR
[69] Gelfand I.M., Levitan B.M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | Zbl
[70] Grinevich P.G., Novikov S.P., “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Commun. Pure Appl. Math., 56:7 (2003), 956–978 | DOI | MR | Zbl
[71] Grinevich P.G., Santini P.M., “The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1”, Nonlinearity, 31:11 (2018), 5258–5308 | DOI | MR
[72] Grinevich P.G., Santini P.M., “The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes”, Phys. Lett. A, 382:14 (2018), 973–979 | DOI | MR | Zbl
[73] Grinevich P.G., Santini P.M., “Numerical instability of the Akhmediev breather and a finite-gap model of it”, Recent developments in integrable systems and related topics of mathematical physics (Kezenoi-Am, Russia, 2016), Springer Proc. Math. Stat., 273, ed. by V.M. Buchstaber et al., Springer, Cham, 2018, 3–23 | DOI | Zbl
[74] P. G. Grinevich and P. M. Santini, “Phase resonances of the NLS rogue wave recurrence in the quasisymmetric case”, Theor. Math. Phys., 196:3 (2018), 1294–1306 | DOI | DOI | MR | Zbl
[75] P. G. Grinevich and P. M. Santini, “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Russ. Math. Surv., 74:2 (2019), 211–263 | DOI | DOI | MR | Zbl
[76] Grinevich P.G., Santini P.M., “The linear and nonlinear instability of the Akhmediev breather”, Nonlinearity, 34:12 (2021), 8331–8358 | DOI | MR | Zbl
[77] P. G. Grinevich and P. M. Santini, “The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson 2 equation”, Russ. Math. Surv., 77:6 (2022), 1029–1059 | DOI | DOI | MR | Zbl
[78] Grinevich P.G., Schmidt M.U., “Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations”, Physica D, 87:1–4 (1995), 73–98 | DOI | MR | Zbl
[79] Hammani K., Wetzel B., Kibler B., et al., “Spectral dynamics of modulation instability described using Akhmediev breather theory”, Opt. Lett., 36:11 (2011), 2140–2142 | DOI
[80] Haver S., Freak wave event at Draupner jacket January 1, 1995, Tech. Rep. PTT-KU-MA, Statoil, Stavanger, 2003 https://home.itp.ac.ru/~alexd/HSE/Haver2004.pdf
[81] Henderson K.L., Peregrine D.H., Dold J.W., “Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation”, Wave Motion, 29:4 (1999), 341–361 | DOI | MR | Zbl
[82] Herbst B.M., Ablowitz M.J., “Numerically induced chaos in the nonlinear Schrödinger equation”, Phys. Rev. Lett., 62:18 (1989), 2065–2068 | DOI | MR
[83] Hirota R., “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1994 ; Khirota R., “Pryamye metody v teorii solitonov”, Solitony, Pod. red. R. Bullafa, F. Kodri, Mir, M., 1983, 175–192 | DOI
[84] R. Hirota, “Direct methods in soliton theory”, Solitons, Top. Curr. Phys., 17, ed. by R. K. Bullough and P. J. Caudrey, Springer, Berlin, 1980, 157–176 | DOI | MR
[85] Huang G., Deng L., Hang C., “Davey–Stewartson description of two-dimensional nonlinear excitations in Bose–Einstein condensates”, Phys. Rev. E, 72:3 (2005), 036621 | DOI
[86] Its A.R., Kotlyarov V.P., “Yavnye formuly dlya reshenii nelineinogo uravneniya Shredingera”, DAN USSR. Ser. A, 1976, no. 11, 965–968 | Zbl
[87] A. R. Its and V. B. Matveev, “Hill's operator with finitely many gaps”, Funct. Anal. Appl., 9:1 (1975), 65–66 | DOI | MR | Zbl
[88] A. R. Its, A. V. Rybin, and M. A. Sall', “Exact integration of nonlinear Schrödinger equation”, Theor. Math. Phys., 74:1 (1988), 20–32 | DOI | MR | Zbl
[89] Kachulin D., Dyachenko A., Zakharov V., “Soliton turbulence in approximate and exact models for deep water waves”, Fluids, 5:2 (2020), 67 | DOI
[90] Kawata T., Inoue H., “Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions”, J. Phys. Soc. Japan, 44:5 (1978), 1722–1729 | DOI | MR | Zbl
[91] Kedziora D.J., Ankiewicz A., Akhmediev N., “Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits”, Phys. Rev. E, 85:6 (2012), 066601 | DOI
[92] Kharif C., Pelinovsky E., Slunyaev A., Rogue waves in the ocean, Springer, Berlin, 2009 | DOI | MR | Zbl
[93] Kibler B., Fatome J., Finot C., et al., “The Peregrine soliton in nonlinear fibre optics”, Nature Phys., 6:10 (2010), 790–795 | DOI
[94] Kibler B., Fatome J., Finot C., et al., “Observation of Kuznetsov–Ma soliton dynamics in optical fibre”, Sci. Rep., 2 (2012), 463 | DOI
[95] Kimmoun O., Hsu H.C., Branger H., et al., “Modulation instability and phase-shifted Fermi–Pasta–Ulam recurrence”, Sci. Rep., 6 (2016), 28516 | DOI
[96] Klein C., Roidot K., “Numerical study of the semiclassical limit of the Davey–Stewartson II equations”, Nonlinearity, 27:9 (2014), 2177–2214 | DOI | MR | Zbl
[97] Klein C., Saut J.-C., “IST versus PDE: A comparative study”, Hamiltonian partial differential equations and applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, 2015, 383–449 | DOI | MR | Zbl
[98] Klein C., Stoilov N., “Numerical study of blow-up mechanisms for Davey–Stewartson II systems”, Stud. Appl. Math., 141:1 (2018), 89–112 | DOI | MR | Zbl
[99] Konopelchenko B.G., “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl
[100] I. M. Krichever, “Potentials with zero coefficient of reflection on a background of finite-zone potentials”, Funct. Anal. Appl., 9:2 (1975), 161–163 | DOI | MR | Zbl
[101] I. M. Kričever, “Algebraic-geometric construction of the Zaharov–Šabat equations and their periodic solutions”, Sov. Math., Dokl., 17 (1976), 394–397 | MR | Zbl
[102] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl
[103] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russ. Math. Surv., 44:2 (1989), 145–225 | DOI | MR | Zbl
[104] Krichever I.M., “Perturbation theory in periodic problems for two-dimensional integrable systems”, Sov. Sci. Rev. Sect. C, 9:2 (1992), 1–103 | MR | Zbl
[105] E. A. Kuznetsov, “Solitons in a parametrically unstable plasma”, Sov. Phys., Dokl., 22 (1977), 507–508
[106] E. A. Kuznetsov, “Fermi–Pasta–Ulam recurrence and modulation instability”, JETP Lett., 105:2 (2017), 125–129 | DOI | DOI
[107] Lake B.M., Yuen H.C., Rungaldier H., Ferguson W.E., “Nonlinear deep-water waves: Theory and experiment. Part 2: Evolution of a continuous wave train”, J. Fluid Mech., 83:1 (1977), 49–74 | DOI | MR
[108] Lax P.D., “Periodic solutions of the KdV equation”, Commun. Pure Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl
[109] Li Y., McLaughlin D.W., “Homoclinic orbits and chaos in discretized perturbed NLS systems. Part I: Homoclinic orbits”, J. Nonlinear Sci., 7:3 (1997), 211–269 | DOI | MR | Zbl
[110] Liu C., Wang C., Dai Z., Liu J., “New rational homoclinic and rogue waves for Davey–Stewartson equation”, Abstr. Appl. Anal., 2014 (2014), 572863 | DOI | MR | Zbl
[111] Liu C., van der Wel R.E.C., Rotenberg N., et al., “Triggering extreme events at the nanoscale in photonic seas”, Nature Phys., 11:4 (2015), 358–363 | DOI
[112] Liu Y., Qian C., Mihalache D., He J., “Rogue waves and hybrid solutions of the Davey–Stewartson I equation”, Nonlinear Dyn., 95:1 (2019), 839–857 | DOI | MR | Zbl
[113] Ma Y.-C., “The perturbed plane-wave solutions of the cubic Schrödinger equation”, Stud. Appl. Math., 60:1 (1979), 43–58 | DOI | MR | Zbl
[114] S. V. Manakov, “Nonlinear Fraunhofer diffraction”, Sov. Phys., JETP, 38:4 (1974), 693–696
[115] Manakov S.V., “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5 (1976), 245–246 | MR | Zbl
[116] Marchenko V.A., “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka. I”, Tr. Mosk. mat. o-va, 1 (1952), 327–420
[117] V. A. Marčenko and I. V. Ostrovskiĭ, “A characterization of the spectrum of Hill's operator”, Math. USSR, Sb., 26:4 (1975), 493–554 | DOI | MR | MR | Zbl
[118] R. M. Matuev and I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space”, Math. Notes, 100:5–6 (2016), 835–846 | DOI | DOI | MR | Zbl
[119] Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Ser. Nonlinear Dyn., Springer, Berlin, 1991 | DOI | MR | Zbl
[120] V. B. Matveev and A. O. Smirnov, “Elliptic solitons and ‘freak waves’”, St. Petersburg Math. J., 33:3 (2022), 523–551 | DOI | MR | Zbl
[121] McKean H.P., van Moerbeke P., “The spectrum of Hill's equation”, Invent. math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[122] McLaughlin D.W., “Whiskered tori for NLS equations”, Important developments in soliton theory, Springer Ser. Nonlinear Dyn., ed. by A.S. Fokas, V.E. Zakharov, Springer, Berlin, 1993, 537–558 | DOI | MR | Zbl
[123] McLaughlin D.W., Overman E.A., \textup {II.}, “Whiskered tori for integrable PDE's: Chaotic behavior in near integrable PDE's”, Surveys in applied mathematics, v. 1, ed. by J.B. Keller et al., Plenum Press, New York, 1995, 83–203 | DOI | MR | Zbl
[124] McLaughlin D.W., Schober C.M., “Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation”, Physica D, 57:3–4 (1992), 447–465 | DOI | MR | Zbl
[125] Moslem W.M., Sabry R., El-Labany S.K., Shukla P.K., “Dust-acoustic rogue waves in a nonextensive plasma”, Phys. Rev. E, 84:6 (2011), 066402 ; Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | DOI | MR
[126] D. Mumford, Tata Lectures on Theta. I, Prog. Math., 28, Birkhäuser, Boston, 1983 | DOI | MR | MR | Zbl
[127] Naveau C., Szriftgiser P., Kudlinski A., et al., “Experimental characterization of recurrences and separatrix crossing in modulational instability”, Opt. Lett., 44:22 (2019), 5426–5429 | DOI
[128] Nguyen J., Dyke P., Luo D., Malomed B.A., Hullet R., “Collisions of matter-wave solitons”, Nature Phys., 10:12 (2014), 918–922 | DOI
[129] K. Nishinari, K. Abe, and J. Satsuma, “A new type of soliton behavior of the Davey–Stewartson equations in a plasma system”, Theor. Math. Phys., 99:3 (1994), 745–753 | DOI | MR | Zbl
[130] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[131] Ohta Y., Yang J., “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604 | DOI | MR
[132] Ohta Y., Yang J., “Dynamics of rogue waves in the Davey–Stewartson II equation”, J. Phys. A: Math. Theor., 46:10 (2013), 105202 | DOI | MR | Zbl
[133] Onorato M., Residori S., Bortolozzo U., Montina A., Arecchi F.T., “Rogue waves and their generating mechanisms in different physical contexts”, Phys. Rep., 528:2 (2013), 47–89 | DOI | MR
[134] Onorato M., Waseda T., Toffoli A., et al., “Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events”, Phys. Rev. Lett., 102:11 (2009), 114502 | DOI
[135] Osborne A.R., Onorato M., Serio M., “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains”, Phys. Lett. A, 275:5–6 (2000), 386–393 | DOI | MR | Zbl
[136] Ozawa T., “Exact blow-up solutions to the Cauchy problem for the Davey–Stewartson systems”, Proc. R. Soc. London A, 436:1897 (1992), 345–349 | DOI | MR | Zbl
[137] Pedit F., Pinkall U., “Quaternionic analysis on Riemann surfaces and differential geometry”, Doc. math. Extra Vol. ICM Berlin, II (1998), 389–400 | MR
[138] Peregrine D.H., “Water waves, nonlinear Schrödinger equations and their solutions”, J. Aust. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl
[139] Pierangeli D., Di Mei F., Conti C., Agranat A.J., DelRe E., “Spatial rogue waves in photorefractive ferroelectrics”, Phys. Rev. Lett., 115:9 (2015), 093901 | DOI | MR
[140] Pierangeli D., Flammini M., Zhang L., et al., “Observation of Fermi–Pasta–Ulam–Tsingou recurrence and its exact dynamics”, Phys. Rev. X, 8:4 (2018), 041017 | DOI
[141] Segur H., Henderson D., Carter J., et al., “Stabilizing the Benjamin–Feir instability”, J. Fluid Mech., 539 (2005), 229–271 | DOI | MR | Zbl
[142] A. V. Slunyaev, D. E. Pelinovsky, and E. N. Pelinovsky, “Rogue waves in the sea: Observations, physics, and mathematics”, Phys. Usp., 66:2 (2023), 148–172 | DOI | DOI | MR
[143] A. O. Smirnov, “Periodic two-phase ‘rogue waves’”, Math. Notes, 94:5–6 (2013), 897–907 | DOI | DOI | MR | Zbl
[144] Solli D.R., Ropers C., Koonath P., Jalali B., “Optical rogue waves”, Nature, 450 (2007), 1054–1057 | DOI
[145] Soto-Crespo J.M., Devine N., Akhmediev N., “Adiabatic transformation of continuous waves into trains of pulses”, Phys. Rev. A, 96:2 (2017), 023825 | DOI | MR
[146] Romero-Ros A., Katsimiga G.C., Mistakidis S.I., et al., “Experimental realization of the Peregrine soliton in repulsive two-component Bose–Einstein condensates”, Phys. Rev. Lett., 132:3 (2024), 033402 | DOI
[147] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb R^3$”, Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | DOI | MR | Zbl
[148] I. A. Taimanov, “On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves”, Sib. Math. J., 44:4 (2003), 686–694 | DOI | MR | Zbl
[149] Taimanov I.A., “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl
[150] I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Russ. Math. Surv., 61:1 (2006), 79–159 | DOI | DOI | MR | Zbl
[151] I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russ. Math. Surv., 66:1 (2011), 107–144 | DOI | DOI | MR | Zbl
[152] I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry”, Math. Notes, 97:1–2 (2015), 124–135 | DOI | DOI | MR | Zbl
[153] I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theor. Math. Phys., 182:2 (2015), 173–181 | DOI | DOI | MR | Zbl
[154] I. A. Taimanov, “The Moutard transformation for the Davey–Stewartson II equation and its geometrical meaning”, Math. Notes, 110:5–6 (2021), 754–766 | DOI | DOI | MR | Zbl
[155] I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation”, Theor. Math. Phys., 157:2 (2008), 1525–1541 | DOI | DOI | MR | Zbl
[156] Tajiri M., Watanabe Y., “Breather solutions to the focusing nonlinear Schrödinger equation”, Phys. Rev. E, 57:3 (1998), 3510–3519 | DOI | MR
[157] The Fermi–Pasta–Ulam problem: A status report, Lect. Notes Phys., 728, ed. by G. Gallavotti, Springer, Berlin, 2008 | DOI | MR | Zbl
[158] Van Simaeys G., Emplit Ph., Haelterman M., “Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave”, Phys. Rev. Lett., 87:3 (2001), 033902 | DOI
[159] Wen L., Li L., Li Z.D., et al., “Matter rogue wave in Bose–Einstein condensates with attractive atomic interaction”, Eur. Phys. J. D, 64:2–3 (2011), 473–478 | DOI
[160] Yuen H.C., Ferguson W.E., Jr., “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation”, Phys. Fluids, 21:8 (1978), 1275–1278 | DOI
[161] Yuen H.C., Lake B.M., “Nonlinear dynamics of deep-water gravity waves”, Adv. Appl. Mech., 22 (1982), 67–229 | DOI | MR | Zbl
[162] Zabusky N.J., Kruskal M.D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15:6 (1965), 240–243 | DOI | Zbl
[163] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI
[164] V. E. Zakharov, “Collapse of Langmuir waves”, Sov. Phys., JETP, 35:5 (1972), 908–914
[165] Zakharov V.E., Dyachenko A.I., “About shape of giant breather”, Eur. J. Mech. B/Fluids, 29:2 (2010), 127–131 | DOI | MR | Zbl
[166] Zakharov V.E., Dyachenko A.I., Prokofiev A.O., “Freak waves as nonlinear stage of Stokes wave modulation instability”, Eur. J. Mech. B/Fluids, 25:5 (2006), 677–692 | DOI | MR | Zbl
[167] Zakharov V.E., Gelash A.A., Soliton on unstable condensate, E-print, 2011, arXiv: 1109.0620v2 [nlin.SI] | DOI
[168] Zakharov V.E., Gelash A.A., “Nonlinear stage of modulation instability”, Phys. Rev. Lett., 111:5 (2013), 054101 | DOI
[169] V. E. Zakharov and S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Funct. Anal. Appl., 19:2 (1985), 89–101 | DOI | MR | Zbl
[170] V. E. Zakharov and A. V. Mikhaĭlov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Sov. Phys., JETP, 47:6 (1987), 1017–1027 | MR
[171] Zakharov V.E., Ostrovsky L.A., “Modulation instability: The beginning”, Physica D, 238:5 (2009), 540–548 | DOI | MR | Zbl
[172] V. E. Zakharov and A. M. Rubenchik, “Nonlinear interaction of high-frequency and low-frequency waves”, J. Appl. Mech. Tech. Phys., 13:5 (1972), 669–681 | DOI
[173] V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Sov. Phys., JETP, 34:1 (1972), 62–69 | MR | MR
[174] V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8:3 (1974), 226–235 | DOI | MR | Zbl
[175] V. E. Zakharov and R. V. Shamin, “Probability of the occurrence of freak waves”, JETP Lett., 91:2 (2010), 62–65 | DOI