Todd Polynomials and Hirzebruch Numbers
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 81-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1956 Hirzebruch found an explicit formula for the denominators of the Todd polynomials, which was proved later in his joint work with Atiyah. We present a new formula for the Todd polynomials in terms of the “forgotten symmetric functions,” which follows from our previous work on complex cobordisms. In particular, this leads to a simpler proof of the Hirzebruch formula and provides new interpretations for the Hirzebruch numbers.
Keywords: Todd polynomials, Hirzebruch numbers, symmetric functions.
@article{TRSPY_2024_325_a3,
     author = {V. M. Buchstaber and A. P. Veselov},
     title = {Todd {Polynomials} and {Hirzebruch} {Numbers}},
     journal = {Informatics and Automation},
     pages = {81--92},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a3/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. P. Veselov
TI  - Todd Polynomials and Hirzebruch Numbers
JO  - Informatics and Automation
PY  - 2024
SP  - 81
EP  - 92
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a3/
LA  - ru
ID  - TRSPY_2024_325_a3
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. P. Veselov
%T Todd Polynomials and Hirzebruch Numbers
%J Informatics and Automation
%D 2024
%P 81-92
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a3/
%G ru
%F TRSPY_2024_325_a3
V. M. Buchstaber; A. P. Veselov. Todd Polynomials and Hirzebruch Numbers. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 81-92. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a3/

[1] Atiyah M.F., Hirzebruch F., “Cohomologie-Operationen und charakteristische Klassen”, Math. Z., 77 (1961), 149–187 | DOI | MR | Zbl

[2] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence”, Math. USSR, Sb., 7:2 (1969), 299–313 | DOI | MR

[3] V. M. Buhštaber, “The Chern–Dold character in cobordisms. I”, Math. USSR, Sb., 12:4 (1970), 573–594 | DOI | MR | Zbl

[4] V. M. Buchstaber, “Complex cobordism and formal groups”, Russ. Math. Surv., 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl

[5] V. M. Bukhshtaber, A. S. Mishchenko, and S. P. Novikov, “Formal groups and their role in the apparatus of algebraic topology”, Russ. Math. Surv., 26:2 (1971), 63–90 | DOI | MR | MR | Zbl

[6] Buchstaber V.M., Veselov A.P., “Chern–Dold character in complex cobordisms and theta divisors”, Adv. Math., 449 (2024), 109720 ; arXiv: 2007.05782 [math.AT] | DOI | MR | DOI

[7] Clausen T., “Theorem”, Astron. Nachr., 17:22 (1840), 351–352 | DOI

[8] Comtet L., Advanced combinatorics: The art of finite and infinite expansions, D. Reidel Publ. Co., Dordrecht, 1974 | DOI | MR | Zbl

[9] Copeland T., Combinatorics for the action of Virasoro / Kac–Schwarz operators: partition polynomials of free probability theory, 2022 https://mathoverflow.net/q/412573

[10] Gessel I.M., “Lagrange inversion”, J. Comb. Theory. Ser. A, 144 (2016), 212–249 | DOI | MR | Zbl

[11] Gould H.W., “Explicit formulas for Bernoulli numbers”, Am. Math. Mon., 79:1 (1972), 44–51 | DOI | MR | Zbl

[12] Hirzebruch F., Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb., 9, Springer, Berlin, 1956 | DOI | MR | Zbl

[13] Hirzebruch F., “Komplexe Mannigfaltigkeiten”, Proc. Int. Congr. Math., Edinburgh, 1958, Cambridge Univ. Press, Cambridge, 1960, 119–136 ; Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973 | MR

[14] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren Math. Wiss., 131, Springer, Berlin, 1966 | DOI | MR | Zbl

[15] Jordan C., Calculus of finite differences, 2nd ed., Hung. Agent Eggenberger Book-Shop, Budapest, 1939; | MR | Zbl

[16] Lenart C., “Symmetric functions, formal group laws, and Lazard's theorem”, Adv. Math., 134:2 (1998), 219–239 | DOI | MR | Zbl

[17] Loday J.-L., The multiple facets of the associahedron, Preprint, Clay Math. Inst., Oxford, 2005 https://www.claymath.org/library/academy/LectureNotes05/Lodaypaper.pdf

[18] Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, Oxford, 1995 | MR | Zbl

[19] McMullen C.T., “Moduli spaces in genus zero and inversion of power series”, Enseign. Math. Sér. 2, 60:1–2 (2014), 25–30 | DOI | MR | Zbl

[20] Milnor J., “On the cobordism ring $\Omega _*$ and complex analogue. I”, Am. J. Math., 82:3 (1960), 505–521 ; Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | DOI | MR | Zbl

[21] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ, 1974 | DOI | MR | Zbl

[22] Nörlund N.E., Vorlesungen über Differenzenrechnung, J. Springer, Berlin, 1924 | DOI

[23] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Sov. Math., Dokl., 1 (1960), 717–719 | MR | Zbl

[24] S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb., 57:4 (1962), 406–442 | MR

[25] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl

[26] Rozhdestvenskii V., “A lower bound in the problem of realization of cycles”, J. Topol., 16:4 (2023), 1475–1508, arXiv: 2303.10240 [math.AT] | DOI | DOI | MR

[27] Shirai S., Sato K., “Some identities involving Bernoulli and Stirling numbers”, J. Number Theory, 90:1 (2001), 130–142 ; Stenli R., Perechislitelnaya kombinatorika: Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005 | DOI | MR | Zbl

[28] R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[29] Staudt K.G.C., “Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend”, J. reine angew. Math., 21 (1840), 372–374 | DOI | MR

[30] Thom R., “Quelques propriétés globales des variétés différentiables”, Commun. Math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl

[31] Todd J.A., “The arithmetical invariants of algebraic loci”, Proc. London Math. Soc., 43:1 (1938), 190–225 | DOI | MR

[32] Woon S.C., “A tree for generating Bernoulli numbers”, Math. Mag., 70:1 (1997), 51–56 | DOI | MR | Zbl