@article{TRSPY_2024_325_a3,
author = {V. M. Buchstaber and A. P. Veselov},
title = {Todd {Polynomials} and {Hirzebruch} {Numbers}},
journal = {Informatics and Automation},
pages = {81--92},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a3/}
}
V. M. Buchstaber; A. P. Veselov. Todd Polynomials and Hirzebruch Numbers. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 81-92. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a3/
[1] Atiyah M.F., Hirzebruch F., “Cohomologie-Operationen und charakteristische Klassen”, Math. Z., 77 (1961), 149–187 | DOI | MR | Zbl
[2] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence”, Math. USSR, Sb., 7:2 (1969), 299–313 | DOI | MR
[3] V. M. Buhštaber, “The Chern–Dold character in cobordisms. I”, Math. USSR, Sb., 12:4 (1970), 573–594 | DOI | MR | Zbl
[4] V. M. Buchstaber, “Complex cobordism and formal groups”, Russ. Math. Surv., 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl
[5] V. M. Bukhshtaber, A. S. Mishchenko, and S. P. Novikov, “Formal groups and their role in the apparatus of algebraic topology”, Russ. Math. Surv., 26:2 (1971), 63–90 | DOI | MR | MR | Zbl
[6] Buchstaber V.M., Veselov A.P., “Chern–Dold character in complex cobordisms and theta divisors”, Adv. Math., 449 (2024), 109720 ; arXiv: 2007.05782 [math.AT] | DOI | MR | DOI
[7] Clausen T., “Theorem”, Astron. Nachr., 17:22 (1840), 351–352 | DOI
[8] Comtet L., Advanced combinatorics: The art of finite and infinite expansions, D. Reidel Publ. Co., Dordrecht, 1974 | DOI | MR | Zbl
[9] Copeland T., Combinatorics for the action of Virasoro / Kac–Schwarz operators: partition polynomials of free probability theory, 2022 https://mathoverflow.net/q/412573
[10] Gessel I.M., “Lagrange inversion”, J. Comb. Theory. Ser. A, 144 (2016), 212–249 | DOI | MR | Zbl
[11] Gould H.W., “Explicit formulas for Bernoulli numbers”, Am. Math. Mon., 79:1 (1972), 44–51 | DOI | MR | Zbl
[12] Hirzebruch F., Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb., 9, Springer, Berlin, 1956 | DOI | MR | Zbl
[13] Hirzebruch F., “Komplexe Mannigfaltigkeiten”, Proc. Int. Congr. Math., Edinburgh, 1958, Cambridge Univ. Press, Cambridge, 1960, 119–136 ; Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973 | MR
[14] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren Math. Wiss., 131, Springer, Berlin, 1966 | DOI | MR | Zbl
[15] Jordan C., Calculus of finite differences, 2nd ed., Hung. Agent Eggenberger Book-Shop, Budapest, 1939; | MR | Zbl
[16] Lenart C., “Symmetric functions, formal group laws, and Lazard's theorem”, Adv. Math., 134:2 (1998), 219–239 | DOI | MR | Zbl
[17] Loday J.-L., The multiple facets of the associahedron, Preprint, Clay Math. Inst., Oxford, 2005 https://www.claymath.org/library/academy/LectureNotes05/Lodaypaper.pdf
[18] Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, Oxford, 1995 | MR | Zbl
[19] McMullen C.T., “Moduli spaces in genus zero and inversion of power series”, Enseign. Math. Sér. 2, 60:1–2 (2014), 25–30 | DOI | MR | Zbl
[20] Milnor J., “On the cobordism ring $\Omega _*$ and complex analogue. I”, Am. J. Math., 82:3 (1960), 505–521 ; Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | DOI | MR | Zbl
[21] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ, 1974 | DOI | MR | Zbl
[22] Nörlund N.E., Vorlesungen über Differenzenrechnung, J. Springer, Berlin, 1924 | DOI
[23] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Sov. Math., Dokl., 1 (1960), 717–719 | MR | Zbl
[24] S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb., 57:4 (1962), 406–442 | MR
[25] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl
[26] Rozhdestvenskii V., “A lower bound in the problem of realization of cycles”, J. Topol., 16:4 (2023), 1475–1508, arXiv: 2303.10240 [math.AT] | DOI | DOI | MR
[27] Shirai S., Sato K., “Some identities involving Bernoulli and Stirling numbers”, J. Number Theory, 90:1 (2001), 130–142 ; Stenli R., Perechislitelnaya kombinatorika: Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005 | DOI | MR | Zbl
[28] R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[29] Staudt K.G.C., “Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend”, J. reine angew. Math., 21 (1840), 372–374 | DOI | MR
[30] Thom R., “Quelques propriétés globales des variétés différentiables”, Commun. Math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl
[31] Todd J.A., “The arithmetical invariants of algebraic loci”, Proc. London Math. Soc., 43:1 (1938), 190–225 | DOI | MR
[32] Woon S.C., “A tree for generating Bernoulli numbers”, Math. Mag., 70:1 (1997), 51–56 | DOI | MR | Zbl