Mots-clés : Gauss–Manin connection
@article{TRSPY_2024_325_a2,
author = {V. M. Buchstaber and E. Yu. Bunkova},
title = {Formulas for {Differentiating} {Hyperelliptic} {Functions} with {Respect} to {Parameters} and {Periods}},
journal = {Informatics and Automation},
pages = {67--80},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/}
}
TY - JOUR AU - V. M. Buchstaber AU - E. Yu. Bunkova TI - Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods JO - Informatics and Automation PY - 2024 SP - 67 EP - 80 VL - 325 UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/ LA - ru ID - TRSPY_2024_325_a2 ER -
V. M. Buchstaber; E. Yu. Bunkova. Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 67-80. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/
[1] Adler M., Moser J., “On a class of polynomials connected with the Korteweg–de Vries equation”, Commun. Math. Phys., 61 (1978), 1–30 | DOI | MR | Zbl
[2] V. I. Arnold, Singularities of Caustics and Wave Fronts, Math. Appl., Sov. Ser., 62, Kluwer, Dordrecht, 1990 | MR | Zbl
[3] Baker H.F., “On the hyperelliptic sigma functions”, Am. J. Math., 20 (1898), 301–384 | DOI | MR
[4] V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200 | DOI | DOI | MR | Zbl
[5] V. M. Buchstaber and E. Yu. Bunkova, “Lie algebras of heat operators in a nonholonomic frame”, Math. Notes, 108:1–2 (2020), 15–28 | DOI | DOI | MR | Zbl
[6] V. M. Buchstaber and E. Yu. Bunkova, “Sigma functions and Lie algebras of Schrödinger operators”, Funct. Anal. Appl., 54:4 (2020), 229–340 | DOI | DOI | MR | Zbl
[7] V. M. Buchstaber and E. Yu. Bunkova, “Hyperelliptic sigma functions and Adler–Moser polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197 | DOI | DOI | MR
[8] V. M. Buchstaber and E. Yu. Bunkova, “Parametric Korteweg–de Vries hierarchy and hyperelliptic sigma functions”, Funct. Anal. Appl., 56:3 (2022), 169–187 | DOI | DOI | MR | Zbl
[9] Buchstaber V.M., Enolskii V.Z., Leykin D.V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | Zbl
[10] Buchstaber V.M., Enolskiĭ V.Z., Leĭkin D.V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, Am. Math. Soc., Providence, RI, 1997, 1–34 | MR
[11] Buchstaber V.M., Enolski V.Z., Leykin D.V., Multi-dimensional sigma-functions, E-print, 2012, arXiv: 1208.0990 [math-ph] | DOI | MR
[12] Buchstaber V.M., Enolski V.Z., Leykin D.V., “$\sigma $-Functions: Old and new results”, Integrable systems and algebraic geometry, v. 2, LMS Lect. Note Ser., 459, Cambridge Univ. Press, Cambridge, 2020, 175–214 | DOI | MR | Zbl
[13] V. M. Buchstaber and D. V. Leykin, “Polynomial Lie Algebras”, Funct. Anal. Appl., 36:4 (2002), 267–280 | DOI | DOI | MR | Zbl
[14] V. M. Buchstaber and D. V. Leykin, “Heat equations in a nonholomic frame”, Funct. Anal. Appl., 38:2 (2004), 88–101 | DOI | DOI | MR | Zbl
[15] V. M. Buchstaber and D. V. Leikin, “Differentiation of Abelian functions with respect to parameters”, Russ. Math. Surv., 62:4 (2007), 787–789 | DOI | DOI | MR | Zbl
[16] V. M. Buchstaber and D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of $(n,s)$-curves”, Funct. Anal. Appl., 42:4 (2008), 268–278 | DOI | DOI | MR | Zbl
[17] Bunkova E.Yu., “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112 | DOI | MR | Zbl
[18] E. Yu. Bunkova and V. M. Buchstaber, “Heat equations and families of two-dimensional sigma functions”, Proc. Steklov Inst. Math., 266 (2009), 1–28 | DOI | MR | Zbl
[19] E. Yu. Bunkova and V. M. Buchstaber, “Explicit formulas for differentiation of hyperelliptic functions”, Math. Notes, 114:5–6 (2023), 1151–1162 | DOI | DOI | MR | Zbl
[20] B. A. Dubrovin, “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[21] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[22] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russ. Math. Surv., 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl
[23] Frobenius G., Stickelberger L., “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. reine angew. Math., 92 (1882), 311–337 | DOI | MR
[24] Klein F., “Ueber hyperelliptische Sigmafunctionen (Zweite Abhandlung)”, Math. Ann., 32 (1888), 351–380 | DOI | MR
[25] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russ. Math. Surv., 32:6 (1977), 185–213 | DOI | MR | Zbl | Zbl
[26] Yu. I. Manin, “Algebraic curves over fields with differentiation”, Am. Math. Soc. Transl., Ser. 2, 37 (1964), 59–78 | Zbl | Zbl
[27] E. Yu. Netaĭ, “Geometric differential equations on bundles of Jacobians of curves of genus 1 and 2”, Trans. Moscow Math. Soc., 2013 (2013), 281–292 | MR | Zbl
[28] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[29] Vasilev V.A., Vetvyaschiesya integraly, MTsNMO, M., 2000