Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 67-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By explicitly solving the problem of differentiating hyperelliptic functions with respect to parameters, we derive explicit formulas for the Christoffel symbols of the Gauss–Manin connection in the universal bundle of hyperelliptic curves; as a consequence, we obtain a solution to the problem of differentiating hyperelliptic functions with respect to periods.
Keywords: sigma functions, heat equations, universal bundle of hyperelliptic curves, problem of differentiating hyperelliptic functions.
Mots-clés : Gauss–Manin connection
@article{TRSPY_2024_325_a2,
     author = {V. M. Buchstaber and E. Yu. Bunkova},
     title = {Formulas for {Differentiating} {Hyperelliptic} {Functions} with {Respect} to {Parameters} and {Periods}},
     journal = {Informatics and Automation},
     pages = {67--80},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - E. Yu. Bunkova
TI  - Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods
JO  - Informatics and Automation
PY  - 2024
SP  - 67
EP  - 80
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/
LA  - ru
ID  - TRSPY_2024_325_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A E. Yu. Bunkova
%T Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods
%J Informatics and Automation
%D 2024
%P 67-80
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/
%G ru
%F TRSPY_2024_325_a2
V. M. Buchstaber; E. Yu. Bunkova. Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 67-80. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a2/

[1] Adler M., Moser J., “On a class of polynomials connected with the Korteweg–de Vries equation”, Commun. Math. Phys., 61 (1978), 1–30 | DOI | MR | Zbl

[2] V. I. Arnold, Singularities of Caustics and Wave Fronts, Math. Appl., Sov. Ser., 62, Kluwer, Dordrecht, 1990 | MR | Zbl

[3] Baker H.F., “On the hyperelliptic sigma functions”, Am. J. Math., 20 (1898), 301–384 | DOI | MR

[4] V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200 | DOI | DOI | MR | Zbl

[5] V. M. Buchstaber and E. Yu. Bunkova, “Lie algebras of heat operators in a nonholonomic frame”, Math. Notes, 108:1–2 (2020), 15–28 | DOI | DOI | MR | Zbl

[6] V. M. Buchstaber and E. Yu. Bunkova, “Sigma functions and Lie algebras of Schrödinger operators”, Funct. Anal. Appl., 54:4 (2020), 229–340 | DOI | DOI | MR | Zbl

[7] V. M. Buchstaber and E. Yu. Bunkova, “Hyperelliptic sigma functions and Adler–Moser polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197 | DOI | DOI | MR

[8] V. M. Buchstaber and E. Yu. Bunkova, “Parametric Korteweg–de Vries hierarchy and hyperelliptic sigma functions”, Funct. Anal. Appl., 56:3 (2022), 169–187 | DOI | DOI | MR | Zbl

[9] Buchstaber V.M., Enolskii V.Z., Leykin D.V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | Zbl

[10] Buchstaber V.M., Enolskiĭ V.Z., Leĭkin D.V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, Am. Math. Soc., Providence, RI, 1997, 1–34 | MR

[11] Buchstaber V.M., Enolski V.Z., Leykin D.V., Multi-dimensional sigma-functions, E-print, 2012, arXiv: 1208.0990 [math-ph] | DOI | MR

[12] Buchstaber V.M., Enolski V.Z., Leykin D.V., “$\sigma $-Functions: Old and new results”, Integrable systems and algebraic geometry, v. 2, LMS Lect. Note Ser., 459, Cambridge Univ. Press, Cambridge, 2020, 175–214 | DOI | MR | Zbl

[13] V. M. Buchstaber and D. V. Leykin, “Polynomial Lie Algebras”, Funct. Anal. Appl., 36:4 (2002), 267–280 | DOI | DOI | MR | Zbl

[14] V. M. Buchstaber and D. V. Leykin, “Heat equations in a nonholomic frame”, Funct. Anal. Appl., 38:2 (2004), 88–101 | DOI | DOI | MR | Zbl

[15] V. M. Buchstaber and D. V. Leikin, “Differentiation of Abelian functions with respect to parameters”, Russ. Math. Surv., 62:4 (2007), 787–789 | DOI | DOI | MR | Zbl

[16] V. M. Buchstaber and D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of $(n,s)$-curves”, Funct. Anal. Appl., 42:4 (2008), 268–278 | DOI | DOI | MR | Zbl

[17] Bunkova E.Yu., “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112 | DOI | MR | Zbl

[18] E. Yu. Bunkova and V. M. Buchstaber, “Heat equations and families of two-dimensional sigma functions”, Proc. Steklov Inst. Math., 266 (2009), 1–28 | DOI | MR | Zbl

[19] E. Yu. Bunkova and V. M. Buchstaber, “Explicit formulas for differentiation of hyperelliptic functions”, Math. Notes, 114:5–6 (2023), 1151–1162 | DOI | DOI | MR | Zbl

[20] B. A. Dubrovin, “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl

[21] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[22] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russ. Math. Surv., 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl

[23] Frobenius G., Stickelberger L., “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. reine angew. Math., 92 (1882), 311–337 | DOI | MR

[24] Klein F., “Ueber hyperelliptische Sigmafunctionen (Zweite Abhandlung)”, Math. Ann., 32 (1888), 351–380 | DOI | MR

[25] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russ. Math. Surv., 32:6 (1977), 185–213 | DOI | MR | Zbl | Zbl

[26] Yu. I. Manin, “Algebraic curves over fields with differentiation”, Am. Math. Soc. Transl., Ser. 2, 37 (1964), 59–78 | Zbl | Zbl

[27] E. Yu. Netaĭ, “Geometric differential equations on bundles of Jacobians of curves of genus 1 and 2”, Trans. Moscow Math. Soc., 2013 (2013), 281–292 | MR | Zbl

[28] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[29] Vasilev V.A., Vetvyaschiesya integraly, MTsNMO, M., 2000