Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 309-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sets of points that determine spectral curves can be regarded as phase coordinates of Hitchin systems. We address the problem of finding trajectories of Hitchin systems in these coordinates and solve it for systems with the structure groups $\mathrm {SO}(4)$ and $\mathrm {SL}(2)$ on genus $2$ curves. Our method consists in transferring the straight line windings from invariant tori, which are given by the Prymians of the spectral curves for Hitchin systems with simple classical structure groups. The transfer is carried out by means of an analog of the Jacobi inversion map, which does not exist for Prymians in general but can be defined in the two cases in question.
Keywords: Hitchin systems
Mots-clés : exact solutions, structure group $\mathrm {SO}(4)$, Jacobi inversion problem.
@article{TRSPY_2024_325_a16,
     author = {O. K. Sheinman},
     title = {Separation of {Variables} for {Hitchin} {Systems} with the {Structure} {Group} $\mathrm {SO}(4)$ on {Genus} $2$ {Curves}},
     journal = {Informatics and Automation},
     pages = {309--321},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves
JO  - Informatics and Automation
PY  - 2024
SP  - 309
EP  - 321
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/
LA  - ru
ID  - TRSPY_2024_325_a16
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves
%J Informatics and Automation
%D 2024
%P 309-321
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/
%G ru
%F TRSPY_2024_325_a16
O. K. Sheinman. Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 309-321. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/

[1] Babelon O., Talon M., “Riemann surfaces, separation of variables and classical and quantum integrability”, Phys. Lett. A, 312:1–2 (2003), 71–77 ; arXiv: hep-th/0209071 | DOI | MR | Zbl | DOI

[2] P. I. Borisova, “Separation of variables for type $D_n$ Hitchin systems on a hyperelliptic curve”, Russ. Math. Surv., 76:2 (2021), 363–365 | DOI | DOI | MR | Zbl

[3] P. I. Borisova and O. K. Sheinman, “Hitchin systems on hyperelliptic curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35 | DOI | DOI | MR | Zbl

[4] B. A. Dubrovin, “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl

[5] Dubrovin B.A., Rimanovy poverkhnosti i nelineinye uravneniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2001

[6] Fay J.D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[7] Gawȩdzki K., Tran-Ngoc-Bich P., “Hitchin systems at low genera”, J. Math. Phys., 41:7 (2000), 4695–4712 ; arXiv: hep-th/9803101 | DOI | MR | Zbl

[8] Van Geemen B., Previato E., “On the Hitchin system”, Duke Math. J., 85:3 (1996), 659–683 ; arXiv: alg-geom/9410015 | MR | Zbl | DOI | DOI

[9] Gorsky A., Nekrasov N., Rubtsov V., “Hilbert schemes, separated variables, and $D$-branes”, Commun. Math. Phys., 222:2 (2001), 299–318 | DOI | MR | Zbl

[10] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[11] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269 ; arXiv: 1712.04422 [math-ph] | DOI | MR | Zbl | DOI | DOI

[12] O. K. Sheinman, “Integrable systems of algebraic origin and separation of variables”, Funct. Anal. Appl., 52:4 (2018), 316–320 ; arXiv: 1806.10178 [math-ph] | DOI | DOI | DOI | MR | Zbl | DOI | DOI

[13] O. K. Sheinman, “Spectral curves of the hyperelliptic Hitchin systems”, Funct. Anal. Appl., 53:3 (2019), 291–303 | DOI | DOI | DOI | MR | Zbl

[14] Sheinman O.K., Wang B., “Hitchin systems: Some recent advances”, UMN, 79:4 (2024), 131–168 | DOI

[15] Tsyganov A.V., Integriruemye sistemy v metode razdeleniya peremennykh, NITs “Regulyarnaya i khaoticheskaya dinamika”; In-t kompyut. issled., M.; Izhevsk, 2005