Mots-clés : exact solutions, structure group $\mathrm {SO}(4)$, Jacobi inversion problem.
@article{TRSPY_2024_325_a16,
author = {O. K. Sheinman},
title = {Separation of {Variables} for {Hitchin} {Systems} with the {Structure} {Group} $\mathrm {SO}(4)$ on {Genus} $2$ {Curves}},
journal = {Informatics and Automation},
pages = {309--321},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/}
}
TY - JOUR
AU - O. K. Sheinman
TI - Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves
JO - Informatics and Automation
PY - 2024
SP - 309
EP - 321
VL - 325
UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/
LA - ru
ID - TRSPY_2024_325_a16
ER -
O. K. Sheinman. Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 309-321. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a16/
[1] Babelon O., Talon M., “Riemann surfaces, separation of variables and classical and quantum integrability”, Phys. Lett. A, 312:1–2 (2003), 71–77 ; arXiv: hep-th/0209071 | DOI | MR | Zbl | DOI
[2] P. I. Borisova, “Separation of variables for type $D_n$ Hitchin systems on a hyperelliptic curve”, Russ. Math. Surv., 76:2 (2021), 363–365 | DOI | DOI | MR | Zbl
[3] P. I. Borisova and O. K. Sheinman, “Hitchin systems on hyperelliptic curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35 | DOI | DOI | MR | Zbl
[4] B. A. Dubrovin, “Theta functions and non-linear equations”, Russ. Math. Surv., 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[5] Dubrovin B.A., Rimanovy poverkhnosti i nelineinye uravneniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2001
[6] Fay J.D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl
[7] Gawȩdzki K., Tran-Ngoc-Bich P., “Hitchin systems at low genera”, J. Math. Phys., 41:7 (2000), 4695–4712 ; arXiv: hep-th/9803101 | DOI | MR | Zbl
[8] Van Geemen B., Previato E., “On the Hitchin system”, Duke Math. J., 85:3 (1996), 659–683 ; arXiv: alg-geom/9410015 | MR | Zbl | DOI | DOI
[9] Gorsky A., Nekrasov N., Rubtsov V., “Hilbert schemes, separated variables, and $D$-branes”, Commun. Math. Phys., 222:2 (2001), 299–318 | DOI | MR | Zbl
[10] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[11] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269 ; arXiv: 1712.04422 [math-ph] | DOI | MR | Zbl | DOI | DOI
[12] O. K. Sheinman, “Integrable systems of algebraic origin and separation of variables”, Funct. Anal. Appl., 52:4 (2018), 316–320 ; arXiv: 1806.10178 [math-ph] | DOI | DOI | DOI | MR | Zbl | DOI | DOI
[13] O. K. Sheinman, “Spectral curves of the hyperelliptic Hitchin systems”, Funct. Anal. Appl., 53:3 (2019), 291–303 | DOI | DOI | DOI | MR | Zbl
[14] Sheinman O.K., Wang B., “Hitchin systems: Some recent advances”, UMN, 79:4 (2024), 131–168 | DOI
[15] Tsyganov A.V., Integriruemye sistemy v metode razdeleniya peremennykh, NITs “Regulyarnaya i khaoticheskaya dinamika”; In-t kompyut. issled., M.; Izhevsk, 2005