@article{TRSPY_2024_325_a15,
author = {I. A. Taimanov},
title = {Floquet{\textendash}Bloch {Functions} on {Non-simply} {Connected} {Manifolds,} the {Aharonov{\textendash}Bohm} {Fluxes,} and {Conformal} {Invariants} of {Immersed} {Surfaces}},
journal = {Informatics and Automation},
pages = {297--308},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a15/}
}
TY - JOUR AU - I. A. Taimanov TI - Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces JO - Informatics and Automation PY - 2024 SP - 297 EP - 308 VL - 325 UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a15/ LA - ru ID - TRSPY_2024_325_a15 ER -
%0 Journal Article %A I. A. Taimanov %T Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces %J Informatics and Automation %D 2024 %P 297-308 %V 325 %U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a15/ %G ru %F TRSPY_2024_325_a15
I. A. Taimanov. Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 297-308. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a15/
[1] Aharonov Y., Bohm D., “Significance of electromagnetic potentials in the quantum theory”, Phys. Rev., 115:3 (1959), 485–491 | DOI | MR | Zbl
[2] Aubin T., Some nonlinear problems in Riemannian geometry, Springer, Berlin, 1998 | DOI | MR | Zbl
[3] C. Bohle and I. A. Taimanov, “Spectral curves for Cauchy–Riemann operators on punctured elliptic curves”, Funct. Anal. Appl., 47:4 (2013), 319–322 | DOI | DOI | MR | Zbl
[4] Bohle C., Taimanov I.A., “Euclidean minimal tori with planar ends and elliptic solitons”, Int. Math. Res. Not., 2015:14 (2015), 5907–5932 | DOI | MR | Zbl
[5] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Sov. Math., Dokl., 17 (1976), 947–951 | MR | Zbl
[6] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russ. Math. Surv., 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl
[7] Kha M., “Green's function asymptotics of periodic elliptic operators on abelian coverings of compact manifolds”, J. Funct. Anal., 274:2 (2018), 341–387 | DOI | MR | Zbl
[8] Kobayashi T., Ono K., Sunada T., “Periodic Schrödinger operators on a manifold”, Forum math., 1:1 (1989), 69–79 | DOI | MR | Zbl
[9] Konopelchenko B.G., “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96:1 (1996), 9–51 | DOI | MR | Zbl
[10] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russ. Math. Surv., 44:2 (1989), 145–225 | DOI | MR | Zbl
[11] R. M. Matuev and I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space”, Math. Notes, 100:5–6 (2016), 835–846 | DOI | DOI | MR | Zbl
[12] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[13] Parnovski L., “Bethe–Sommerfeld conjecture”, Ann. Henri Poincaré, 9:3 (2008), 457–508 | DOI | MR | Zbl
[14] M. M. Skriganov, “Proof of the Bethe–Sommerfeld conjecture in dimension two”, Sov. Math., Dokl., 20 (1979), 956–959 | MR | Zbl
[15] Skriganov M.M., “The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential”, Invent. math., 80:1 (1985), 107–121 | DOI | MR | Zbl
[16] Sunada T., “A periodic Schrödinger operator on an abelian cover”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 37:3 (1990), 575–583 | MR | Zbl
[17] Taimanov I.A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, Am. Math. Soc., Providence, RI, 1997, 133–151 ; arXiv: dg-ga/9511005 | MR | Zbl | DOI
[18] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb R^3$”, Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | DOI | MR | Zbl
[19] I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Russ. Math. Surv., 61:1 (2006), 79–159 | DOI | DOI | MR | Zbl
[20] Taimanov I.A., “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl
[21] I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry”, Math. Notes, 97:1–2 (2015), 124–135 | DOI | DOI | MR | Zbl
[22] Taimanov I.A., “Surfaces via spinors and soliton equations”, Proc. Int. Congr. Math., Helsinki, 2022, v. 4, Eur. Math. Soc., Berlin, 2023, 2638–2654 | DOI | MR
[23] I. A. Taimanov, “Geometry and quasiclassical quantization of magnetic monopoles”, Theor. Math. Phys., 218:1 (2024), 129–144 | DOI | DOI | MR
[24] O. A. Veliev, “Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe–Sommerfeld conjecture”, Funct. Anal. Appl., 21:2 (1987), 87–100 | DOI | MR | Zbl
[25] Veliev O.A., “Perturbation theory for the periodic multidimensional Schrödinger operator and the Bethe–Sommerfeld conjecture”, Int. J. Contemp. Math. Sci., 2:1–4 (2007), 19–87 | DOI | MR | Zbl